Microvascular Complications in Diabetes:

Perspectives on Glycemic Control to Prevent Microvascular Complications

David M. Kendall, MD Chief Scientific and Medical Officer

Discussion Outline: Glycemia and Microvascular Compliations

- Clinical Trials A Brief History
 - Intensive glucose control and microvascular disease risk
- A brief reminder of the Serial Position Effect
- Early vs. Late Intervention A Clinical Perspective
 - EARLY = DCCT, UKPDS, Kumamoto
 - LATE = ACCORD, ADVANCE, VADT and SDIS
- Updates from ACCORD
- A Rational Clinical Approach
 - Balancing Risk Benefit with intensive glycemic control

Glycemic Control for Microvascular Complications: Is Late Too Late? Type 1 Diabetes N Duration of Diabetes Follow Up (Yrs) Publication Stockholm (SDIS) 102 -18 9.4% 7 1993 Type 2 Diabetes Full Publication Pub

Glycemic Control for Microvascular Complications: Is Late Too Late?

The Impact of Early Intervention

Early Intensive Diabetes Therapy: Reduction in Microvascular Complications

	DCCI	Kumamoto	UKPUS
HbA1c	9 → 7.1%	9+ → 7.2%	8 → 7%
Retinopathy	63%	69%	17-29%
Nephropathy	54%	70%	24-33%
Neuropathy	60%	Improved	
CV disease	NS		16%

DCGT Research Group. N Engl J Med. 1993;323:977-985. Ohkubo Y, et al. Diabeles Res Clin Pract. 1995;28:103-117. UKPDS 33: Lancet 1990; 352, 837-853.

Glycemic Control for Microvascular Complications: Is Late Too Late?

Enduring Impact of Early Intervention
EDIC and UKPDS

Glycemic Control for Microvascular Complications: Is Late Too Late?

The Impact Late Intervention

VADT Correction on Microalbuminuria

- "On further examination of the data on albuminuria from the {[VADT] we found that the data set that we used to evaluate the progression of disease was constructed improperly."
 - As a result, the rates of progression to microalbuminuria and macroalbuminuria were reported [incorrectly]...
- "Both progression from normal to microalbuminuria or macroalbuminuria (P = 0.03) and progression from either normal or microalbuminuria to macroalbuminuria (P = 0.04) favor intensive treatment."
 - Any progression of albuminuria is now statistically significant (P<0.01)

"We appreciate the opportunity to update our results"

Intensive Glycemic Control in Diabetes Is It Safe? What are the Risks?

- Severe hypoglycemia risk
 - Increased ~3 fold with intensive therapy
 - ? predictor of adverse outcome/mortality (VADT, ACCORD)
- · Increase in health care resource use
 - Increase near-term cost of care (clinic, education, meds, technology)
 - Increased number and type of medications used
- · Weight gain
 - Increase in body weight (~5-20 lbs)
 - Unknown long term impact on CV risk, risk factors
- · Increased mortality risk?

A Final Note on ACCORD

Final Results - Microvascular and Eye Study Data

Conclusions – ACCORD Microvascular

- Intensive treatment of glycemia in the ACCORD cohort did not reduce the risk of composite measures of advanced microvascular outcomes
- Intensive therapy delayed the onset of albuminuria and some measures of eye complications and neuropathy
- Microvascular benefits of intensive therapy should be weighed against the potential for increased mortality, increased body weight, and the risk for severe hypoglycemia

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Effects of Medical Therapies on Retinopathy Progression in Type 2 Diabetes

The ACCORD Study Group and ACCORD Eye Study Group*

ACCORD Eye Study Design

- · Baseline and Year 4 comprehensive
- · eye exams including:
 - Visual acuity measurements
 - Fundus photography of 7 standard stereoscopic fields
 - Central grading of the fundus photographs using the Early Treatment Diabetic Retinopathy Study (ETDRS) Classification of diabetic retinopathy

Proportion of Participants with Diabetic Retinopathy Progression at 4 years

	Blood Pressure		Lipid		N=2856 Total
Glycemia	Intensive	Standard	Feno+statin	Placebo	TOTALS
Intensive	9.2% (29/315)	8.1% (25/308)	5.3% (21/400)	7.1% (29/406)	7.5% (104/1429)
Standard	11.4% (38/332)	9.4% (29/308)	7.6% (31/406)	13.4% (51/381)	10.4% (149/1427)
TOTALS	10.4% (67/647)	8.8% (54/616)	6.5% (52/806)	10.2% (80/787)	8.9% (253/2856)

ACCORD Eye Study Conclusions

- Intensive glycemia and combination of fenofibrate and simvastatin reduced the proportion whose retinopathy progressed by about one-third
 - Effects were consistent across subgroups
- No statistically significant effect of intensive blood pressure
 - No subgroup with effect

Diabetes and Glycemic Control A Rational Approach to Limit Complications

As low as possible
As early as possible
For as long as possible
As safely as possible
And as rationally as possible

Conclusions