Treating Lipids in Metabolic Syndrome

Daniel E. Wise MD, FACC, FNLA
Cardiology Specialists of the Carolinas PA

Disclosures

• Speakers Bureau For: Abbott, Astra Zenica, Pfizer, Bristol Myers-Squibb, Novartis, Glaxo Smith-Kline, Takeda, Merck, MERCK Schering-Plough, Sanofi-Aventis, CV Therapeutics

Metabolic Syndrome Increases Risk for CHD and Type 2 Diabetes

ATP III: The Metabolic Syndrome*

*Diagnosis is established when ≥3 of these risk factors are present

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Defining Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal obesity</td>
<td>>102 cm (>40 in)</td>
</tr>
<tr>
<td>(Waist circumference)</td>
<td>>88 cm (>35 in)</td>
</tr>
<tr>
<td>Men</td>
<td>>102 cm (>40 in)</td>
</tr>
<tr>
<td>Women</td>
<td>>88 cm (>35 in)</td>
</tr>
<tr>
<td>TG</td>
<td>>150 mg/dL</td>
</tr>
<tr>
<td>HDL-C</td>
<td><40 mg/dL</td>
</tr>
<tr>
<td>Men</td>
<td><50 mg/dL</td>
</tr>
<tr>
<td>Blood pressure</td>
<td>≥130/65 mm Hg</td>
</tr>
<tr>
<td>Fasting glucose</td>
<td>≥110 mg/dL</td>
</tr>
</tbody>
</table>

Definitions of Metabolic Syndrome

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Original Level</th>
<th>Update</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal obesity</td>
<td>>102 cm (>40 in)</td>
<td>≥102 cm (>40 in)</td>
</tr>
<tr>
<td>(Waist circumference)</td>
<td>>88 cm (>35 in)</td>
<td>>88 cm (>35 in)</td>
</tr>
<tr>
<td>Men</td>
<td>>102 cm (>40 in)</td>
<td>>102 cm (>40 in)</td>
</tr>
<tr>
<td>Women</td>
<td>>88 cm (>35 in)</td>
<td>>88 cm (>35 in)</td>
</tr>
<tr>
<td>TG</td>
<td>>150 mg/dL</td>
<td>>150 mg/dL</td>
</tr>
<tr>
<td>HDL-C</td>
<td><40 mg/dL</td>
<td><40 mg/dL</td>
</tr>
<tr>
<td>Men</td>
<td><50 mg/dL</td>
<td><50 mg/dL</td>
</tr>
<tr>
<td>Blood pressure</td>
<td>≥130/85 mm Hg</td>
<td>≥130/85 mm Hg</td>
</tr>
<tr>
<td>Fasting glucose</td>
<td>≥110 mg/dL</td>
<td>>100 mg/dL</td>
</tr>
</tbody>
</table>

ATP III: The Metabolic Syndrome

AHA/NHLBI Scientific Statement. Circulation 2005;112
Prevalence of the NCEP Metabolic Syndrome: NHANES III by Age

<table>
<thead>
<tr>
<th>Age, years</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-29</td>
<td>24%</td>
<td>23%</td>
</tr>
<tr>
<td>30-39</td>
<td>8%</td>
<td>6%</td>
</tr>
<tr>
<td>40-49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-59</td>
<td>44%</td>
<td>44%</td>
</tr>
<tr>
<td>60-69</td>
<td>25%</td>
<td>16%</td>
</tr>
<tr>
<td>70+</td>
<td>28%</td>
<td>21%</td>
</tr>
</tbody>
</table>

Prevalence of the NCEP Metabolic Syndrome: NHANES III by Sex and Race/Ethnicity

<table>
<thead>
<tr>
<th>Race/Ethnicity</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>24%</td>
<td>23%</td>
</tr>
<tr>
<td>African American</td>
<td>8%</td>
<td>6%</td>
</tr>
<tr>
<td>Mexican American</td>
<td>44%</td>
<td>44%</td>
</tr>
<tr>
<td>Other</td>
<td>21%</td>
<td>23%</td>
</tr>
</tbody>
</table>

Cardiovascular Disease Mortality Increased in the Metabolic Syndrome: Kuopio Ischaemic Heart Disease Risk Factor Study

Cumulative Hazard, %

Follow-up, y

Cardiovascular Disease Mortality Among 1,000 Men (10 yr follow-up)

RR (95% CI) 3.55 (1.98-6.43)

Treatment Strategies for Diabetic Dyslipidemia

- Primary
 - Lower LDL-C
- Secondary
 - Raise HDL-C
 - Lower triglycerides
- Other Approaches
 - Non-HDL-C
 - Apo B, NMR Particle Concentration
 - Remnants

Effects of Insulin Resistance and Type 2 Diabetes on Lipoprotein Subclass Particle Size and Concentration Determined by Nuclear Magnetic Resonance

Diabetes 2003;52(2):453-462

Study Design

- 148 subjects (48 with untreated Type 2 DM) assessed for insulin sensitivity using hyperinsulinenic euglycemic clamp
- Glucose disposal rate (GDR) < 12.8 mg/kg/min used to define insulin resistant non-diabetic subjects
- Lipoprotein subclass concentrations measured by NMR spectroscopy and lipids by standard methods

When compared with IS, the IR and diabetes subgroups exhibited:

- A two- to threefold increase in large VLDL particle concentrations (no change in medium or small VLDL), which produced an increase in serum triglycerides;
- A decrease in LDL size as a result of an increase in small and a reduction in large LDL subclasses, plus an increase in overall LDL particle concentration, which together led to no difference (IS) or a minimal difference (IS versus diabetes) in LDL cholesterol;
- A decrease in the large cardioprotective HDL, combined with an increase in the small HDL subclass such that there was no net significant difference in HDL cholesterol.

Conclusions

Do We Have Evidence That Treating The Metabolic Syndrome and the Components of the Metabolic Syndrome Makes a Difference?

- Jupiter Trial
- Steno 2 Trial
- The SANDS Trial

Primary Endpoint

Time to first occurrence of a CV death, stroke, MI, hospitalization for unstable angina or arterial revascularization

- Mean Age 55.1 Years
- Mean F/U 7.8 Years
- Trial Used 1988 Danish Medical Association Guidelines Initially Which Were Upgraded in 2000
- Targeted Therapy: Hyperglycemia, Hypertension, Dyslipidemia, Microalbuminuria and Secondary Prevention of CVD with Aspirin

JUPITER Study Design

- Rationale for the Use of statins in primary prevention: an Intervention Trial Evaluating Rosuvastatin
- 4 Week Placebo Run-in
- No History of CVD
- Men ≥ 50 years; Women ≥ 60 years
- LDL-C < 130 mg/dL, hs-CRP levels ≥ 2.0 mg/L
- 4 Week Placebo Run-in
- JUPITER Study Design
- Rosuvastatin 20 mg (n=8901)
- Placebo (n=8901)
- Follow-up visits included: Laboratory evaluations, pill counts, structured interviews for outcomes and adverse events
- Included: LDL-C, hs-CRP and other laboratory evaluations

Steno-2 Trial

- Mean Age 55.1 Years
- Mean F/U 7.8 Years
- Trial Used 1988 Danish Medical Association Guidelines Initially Which Were Upgraded in 2000
- Targeted Therapy: Hyperglycemia, Hypertension, Dyslipidemia, Microalbuminuria and Secondary Prevention of CVD with Aspirin
Steno-2: Effect of Therapies on Selected Risk Factors

The SANDS Trial

- 499 Patients with DM II
- Primary Endpoint-Change in CITM and LVH
- Two Arms:
 - Standard Care: LDL < 100 mg/dL, Non-HDL Chol < 130 mg/dL, BP < 130/80
 - Intensive Care: LDL < 70 mg/dL, Non-HDL Chol < 100 mg/dL, BP < 115/75
- Intensive Care had 2 Groups: Simvastatin alone (154) and Simvastatin + Ezetimibe (69)
- Simvastatin + Ezetimibe At Least as Effective, Statistically Better
- Average Hgb A1c – 8.1 mg/dL

Steno 2 Results at 13 Years

Number of Cardiovascular Events
Guidelines for the Management of Hyperlipidemia

• Review the Recent Guideline Recommendations
• Review the Data Upon Which the Guideline Updates Were Based
• Examine New Data That Raise Questions as to Whether Current LDL-C Guidelines Adequately Explain Residual Risk
• Review Data From Fibrate, Niacin and Omega-3 Fish Oil Trials

Fibrate Clinical Trials

• BIP Trial
• Helsinki Heart Study
• VA-HIT Trial
• DAIS Trial
• FIELD Trial
• ACCORD Trial

Summary of Fibrate Clinical Trial Data

• Positive Trial Data in Primary and Secondary Prevention Trials With Gemfibrozil
• Most of Clinical Benefit Seen in Patients High TG, Low HDL-C, Obesity, and Insulin Resistance in Both Trials

Summary of Fibrate Clinical Trial Data

• Summary of Fibrate Trials (BIP, FIELD, ACCORD)
 – Primary Endpoint Negative
 – Subpopulation Positive
 • High TG, Low HDL, Metabolic Syndrome

Niacin Based Trials

• Coronary Drug Project
• FATS Trial
• HATS Trial
• Armed Forces Regression Trial
• ARBITER 2
• ARBITER 3
• ARBITER 6 (HALTS)

Simvastatin and Niacin, Antioxidant Vitamins, or the Combination For the Prevention of Coronary Disease

ARBITER 2: A Double-blind, Placebo-controlled Study of Extended-release Niacin on Atherosclerosis Progression in Secondary Prevention Patients Treated with Statins

Clinical Events

- Composite clinical event endpoint
 - Unstable angina/MI hospitalization
 - Stroke
 - Sudden cardiac death
 - Percutaneous coronary revascularization, CAGB, or peripheral revascularization

Lipid Values

- Patients were well-controlled on statin therapy at baseline
 - LDL-C “at goal” – < 90 mg/dL
 - HDL-C “moderately low” – 40 mg/dL

- After 12 months, HDL-C and triglycerides were significantly improved with Niaspan® vs.. baseline

Progression in Secondary Prevention Patients Treated with Statins

CIMT at 12 Months vs.. Baseline

- Within-Group Comparison
 - Significant progression in placebo group – 1st endpoint met
 - Progression rate 68% lower in Niaspan® group

Armed Forces Regression Study (AFREGS)

- Double-Blind Trial
- 143 Retired Military Personnel
- Low HDL and Stable CAD
- <76 YOA
- LDL<160 mg/dL
- HDL<40 mg/dL
- Had to have Coronary Stenosis of 30-80% of Luminal Diameter

ARBITER 2: Key Points Regarding Lipid Values

- Patients were well-controlled on statin therapy at baseline
 - LDL-C “at goal” – < 90 mg/dL
 - HDL-C “moderately low” – 40 mg/dL

- After 12 months, HDL-C and triglycerides were significantly improved with Niaspan® vs.. baseline

Armed Forces Regression Study (AFREGS)

- 30 Month Study
- Cardiac Catheterization at Baseline and 30 Months
- Double-Blind Placebo Controlled Trial
- Drug Regimen
 - Gemfibrozil 600 mg BID
 - Niacin 250 mg/day Titrated to 3 g/day
 - Cholestyramine 2 g/day titrated to 16 g/day

Armed Forces Regression Study (AFREGS)-Lipid Results

- Change in Lipids Relative to Placebo
 - TC 19.6% Lower
 - LDL 26.4% Lower
 - TG 49.8% Lower
 - HDL 35.9% Higher

Armed Forces Regression Study (AFREGS)-Angiographic Results

- Placebo
 - Focal Coronary Stenosis Increased 1.4%
- Treatment Regimen
 - Focal Coronary Stenosis Decreased 0.8%

Armed Forces Regression Study (AFREGS)-Clinical Outcomes

- Drug Regimen
 - Death 1.4%
 - UAP 9.9%
 - PCI 2.8%
 - CABG 2.8%
 - Composite 12.7%

- Placebo
 - Death 2.8%
 - UAP 20.8%
 - PCI 2.8%
 - CABG 11.1%
 - Composite 26.4%

Predictors of Risk Reduction in Lipid Trials

- Objective
 - Determine relative importance of changes in specific lipid parameters in predicting risk reduction observed in lipid-altering trials
- Meta-analysis of 17 studies, including:
 - HHS, FATS, 4S, WOSCOPS, CARE, LIPID, AFCAPS, VA-HIT, BIP, DAIS, HATS, PROSPER, HPS, ALLHAT, ASCOT
- 44,170 patients; 3869 CHD events

Composite Outcomes Benefit

- Combine FATS, HATS, ARBITER 2,3,6, AFREGS
- Total Patients~1500
- Expected Change in Outcomes Based on:
 - For Every 1% Decrease in LDL, There is a 1% Decrease in Events
 - For Every 1% Rise in HDL, There is a 1 1/2-2% Decrease in Events
- Expected Change in Events for Combined Trials 70-80%
- Actual Change in Events for Combined Trials 70-80%
AIM-HIGH
3300 Patients
Men and Women With Known CAD
Statin Therapy to LDL<80 mg/dL
Randomized to Niaspan Versus Placebo
Expected Completion 2012

HPS-2 THRIVE
20,000 Patients
Men and Women with Known CVD
Statin, Ezetamibe ER Niacin/Laropiprant
Expected Completion 2013

Omega 3 Fish Oil: Clinical Benefit for Patients Undergoing Carotid Endarterectomy
- Randomized Trial of Omega-3 Fish Oil, Sunflower Oil (Omega-6), Controls (80:20 Palm and Soybean)
- 188 Patients Randomized to 3 Groups
- Supplemental Oil Started an Average of 42 Days Prior to Surgery
- Primary Outcome was Plaque Stability at the Time of Surgery and Concentrations of Various Oils in the Plaque

Lancet 2003; 361:477 - 485

Omega-3 Fish Oil: Clinical Benefits
- Levels of EPA and DHA Increased in Phospholipids, Cholesterol Esters and Tracyglycerols
- Proportion of EPA and DHA in Plaque Removed was Significantly Higher
- More Well-Formed Fibrous Caps and Fewer Thin Wall Caps
- Lower Distribution of Macrophages Within the Plaque

Lancet 2003; 361:477 - 485

Japan EPA Lipid Intervention Study (JELIS Trial)
- 18645 Patients Randomized
- Average Age 61
- Male 31%, Female 69%
- Eligibility Criteria
 - Total Cholesterol ≥ 6.5 mmol/L (254 mg/dL)
 - LDL Cholesterol ≥ 4.4 mmol/L (172 mg/dL)
 - With or Without CAD
- Randomized to Statin plus 1.8 Grams of EPA vs. Statin Alone (Control Group)
- Primary Outcome: Any Major Coronary Event

Lancet 2007; 369:1090-1098

JELIS Trial: Effect of EPA
- 19% Relative Reduction in Major Coronary Events (p=0.011)
- UAP and Non-Fatal MI Were Also Significantly Reduced
- Sudden Death and Coronary Death Were Not Significantly Affected
- Secondary Prevention 19% Relative Reduction in Major Coronary Events (p=0.048)
- Primary Prevention 18% Relative Reduction Which Was Not Significant
- Baseline EPA Levels in the Study Patients 2.9 mol% vs. US Population 0.3 mol%

Lancet 2007; 369:1090-1098

Effects of EPA on Coronary Artery Disease in Hypercholesterolemic Patients with Multiple Risk Factors: Sub-Analysis of JELIS
Atherosclerosis 2008;200:135-140
Questions ?