Review Article

Cocaine Cardiovascular Toxicity

Authors: Steven B. Karch, MD

Abstract

Cocaine abuse kills thousands every year. Preexisting coronary artery disease appears to account for many of the deaths, but often the mechanism is much more complex. There exists a widely held but utterly mistaken notion that cocaine-related deaths are due to drug overdose. Except in the case of drug couriers (“body packers”) with massive drug exposure, death is not dose related, and cocaine blood levels cannot be used to predict toxicity. Most deaths occur after prolonged drug use, which initiates a series of changes at the molecular, cellular, and tissue levels. All of these changes favor sudden death. Potentially lethal myocardial alterations include hypertrophy, fibrosis, and microangiopathy. Recently it has become clear that genetic causes, such as fully or partially expressed congenital long QT syndrome, may also play a role. The relative importance of each of these factors is reviewed.


Key Points


* The number of cocaine-related deaths continues to increase in the United States and Europe.


* Cocaine-related deaths are not dose related, and isolated blood levels do not predict toxicity.


* Chronic cocaine use leads to cardiac hypertrophy, myocardial fibrosis, and microangiopathy.


* Most cocaine-related deaths occur in chronic, not naive, drug takers.


* The cause of death is multifactorial but in some cases may involve a heritable ion channel abnormality.

This content is limited to qualifying members.

Existing members, please login first

If you have an existing account please login now to access this article or view purchase options.

Purchase only this article ($25)

Create a free account, then purchase this article to download or access it online for 24 hours.

Purchase an SMJ online subscription ($75)

Create a free account, then purchase a subscription to get complete access to all articles for a full year.

Purchase a membership plan (fees vary)

Premium members can access all articles plus recieve many more benefits. View all membership plans and benefit packages.

References

1. Substance Abuse and Mental Health Service Administration, Office of Applied Studies. Annual Medical Examiner Data from the Drug Abuse Warning Network, 2002. DAWN Series D-23, DHHS Publication (SMA) 03-3781.
 
2. Foltin RW, Fischman MW. Smoked and intravenous cocaine in humans: acute tolerance, cardiovascular and subjective effects. J Pharmacol Exp Ther 1991;257:247–261.
 
3. Blaho K, Logan B, Winbery S, et al. Blood cocaine and metabolite concentrations, clinical findings, and outcome of patients presenting to an ED. Am J Emerg Med 2000;18:593–598.
 
4. Karch SB, Stephens B, Ho CH. Relating cocaine blood concentrations to toxicity: an autopsy study of 99 cases. J Forensic Sci 1998;43:41–45.
 
5. Drummer O, Forrest AR, Goldberger B, et al. Forensic science in the dock. BMJ 2004;329:636–637.
 
6. Stephens BG, Jentzen JM, Karch S, et al. National Association of Medical Examiners Position Paper on the Certification of Cocaine-related Deaths. Am J Forensic Med Pathol 2004;25:11–13.
 
7. Wetli CV, Mash D, Karch SB. Cocaine-associated agitated delirium and the neuroleptic malignant syndrome. Am J Emerg Med 1996;14:425–428.
 
8. Stephens BG, Jentzen JM, Karch S, et al. Criteria for the interpretation of cocaine levels in human biological samples and their relation to the cause of death. Am J Forensic Med Pathol 2004;25:1–10.
 
9. Lange RA, Cigarroa RG, Yancy CW Jr, et al. Cocaine-induced coronary-artery vasoconstriction. N Engl J Med 1989;321:1557–1562.
 
10. Su J, Li J, Li W, et al. Cocaine induces apoptosis in primary cultured rat aortic vascular smooth muscle cells: possible relationship to aortic dissection, atherosclerosis, and hypertension. Int J Toxicol2004;23:233–237.
 
11. He J, Xiao Y, Zhang L. Cocaine induces apoptosis in human coronary artery endothelial cells. J Cardiovasc Pharmacol 2000;35:572–580.
 
12. Mendelson JH, Mello NK, Sholar MB, et al. Temporal concordance of cocaine effects on mood states and neuroendocrine hormones. Psychoneuroendocrinology 2002; 27:71–82.
 
13. Simpson RW, Edwards WD. Pathogenesis of cocaine-induced ischemic heart disease: autopsy findings in a 21-year-old man. Arch Pathol Lab Med 1986;110:479–484.
 
14. Steinhauer JR, Caulfield JB. Spontaneous coronary artery dissection associated with cocaine use: a case report and brief review. Cardiovasc Pathol 2001;10:141–145.
 
15. Jaffre F, Callebert J, Sarre A, et al. Involvement of the serotonin 5-HT2B receptor in cardiac hypertrophy linked to sympathetic stimulation: control of interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha cytokine production by ventricular fibroblasts. Circulation 2004;110:969–974.
 
16. Tseng YT, Rockhold RW, Hoskins B, et al. Cardiovascular toxicities of nandrolone and cocaine in spontaneously hypertensive rats. Fundam Appl Toxicol 1994;22:113–121.
 
17. Henning RJ, Li Y. Cocaine produces cardiac hypertrophy by protein kinase C dependent mechanisms. J Cardiovasc Pharmacol Ther 2003; 8:149–160.
 
18. Wang JF, Yan X, Min J, et al. Cocaine downregulates cardiac SERCA2a and depresses myocardial function in the murine model. Can J Physiol Pharmacol 2002;80:1015–1021.
 
19. Karch SB, Green GS, Young S. Myocardial hypertrophy and coronary artery disease in male cocaine users. J Forensic Sci 1995;40:591–595.
 
20. Nademanee K. Cardiovascular effects and toxicities of cocaine. J Addict Dis 1992;11:71–82.
 
21. Chakko S, Fernandez A, Mellman TA, et al. Cardiac manifestations of cocaine abuse: a cross-sectional study of asymptomatic men with a history of long-term abuse of ’crack’ cocaine. J Am Coll Cardiol 1992;20:1168–1174.
 
22. Brickner ME, Willard JE, Eichhorn EJ, et al. Left ventricular hypertrophy associated with chronic cocaine abuse. Circulation 1991;84:1130–1135.
 
23. Kitzman DW, Scholz DG, Hagen PT, et al. Age-related changes in normal human hearts during the first 10 decades of life, II (maturity): a quantitative anatomic study of 765 specimens from subjects 20 to 99 years old. Mayo Clin Proc 1988;63:137–146.
 
24. Haider AW, Larson MG, Benjamin EJ, et al Increased left ventricular mass and hypertrophy are associated with increased risk for sudden death. J Am Coll Cardiol 1998;32:1454–1459.
 
25. Messerli FH, BD, Ventura HO, et al. Overweight and sudden death: increased ventricular ectopy in cardiopathy of obesity. Arch Intern Med 1987;147:1725–1728.
 
26. Francis GS, McDonald KM, Cohn JN. Neurohumoral activation in pre- clinical heart failure: remodeling and the potential for intervention. Circulation 1993;87(5 Suppl): IV-90 –IV-96.
 
27. Gonzalez A, Lopez B, Diez J. Fibrosis in hypertensive heart disease: role of the renin-angiotensin-aldosterone system. Med Clin North Am 2004;88:83–97.
 
28. Kern TS, Engerman RL. Microvascular metabolism in diabetes. Metabolism 1986;35(4 Suppl 1): 24–27.
 
29. Picano E, Pelosi G, Marzilli M, et al. In vivo quantitative ultrasonic evaluation of myocardial fibrosis in humans. Circulation 1990;81:58–64.
 
30. Karch SB, Billingham ME. Myocardial contraction bands revisited. Hum Pathol 1986;17:9–13.
 
31. Szakacs JE Cannon A. L-Norepinephrine myocarditis. Am J Clin Pathol 1958;30:425–434.
 
32. Karch SB, Billingham ME. Coronary artery and peripheral vascular disease in cocaine users. Coron Artery Dis 1995;6:220–225.
 
33. Abarquez RF Jr, Cinco JE. Microcirculation: target therapy in cardiovascular diseases: a clinical perspective. Clin Hemorheol Microcirc 2003;29:157–165.
 
34. Nassogne MC, Evrard P, Courtoy PJ. Selective direct toxicity of cocaine on fetal mouse neurons: teratogenic implications of neurite and apoptotic neuronal loss. Ann N Y Acad Sci 1998;846:51–68.
 
35. Sherman MP, Aeberhard EE, Wong VZ, et al. Effects of smoking marijuana, tobacco or cocaine alone or in combination on DNA damage in human alveolar macrophages. Life Sci 1995;56: 2201–2207.
 
36. Kern MJ. Coronary physiology revisited: practical insights from the cardiac catheterization laboratory. Circulation 2000;101:1344–1351.
 
37. Frohlich ED. State of the art lecture: risk mechanisms in hypertensive heart disease. Hypertension1999;34:782–789.
 
38. Britten MB, Zeiher AM, Schachinger V. Microvascular dysfunction in angiographically normal or mildly diseased coronary arteries predicts adverse cardiovascular long-term outcome. Coron Artery Dis2004;15:259–264.
 
39. Takechi S, Nomura A, Machida M, et al. Different coronary blood flow increase in left ventricular hypertrophy due to hypertension compared to hypertrophic cardiomyopathy at elevated heart rate.Hypertens Res 2003;26:789–793.
 
40. Gavin JB, Maxwell L, Edgar SG. Microvascular involvement in cardiac pathology. J Mol Cell Cardiol1998;30:2531–2540.
 
41. Titcomb CP Jr. Matters of the athletic heart. J Insur Med 2003;35:179–182.
 
42. Engel G, Beckerman JG, Froelicher VF, et al. Electrocardiographic arrhythmia risk testing. Curr Probl Cardiol 2004;29:365–432.
 
43. Calder KK, Tomongin C, Mallon WK, et al. Manual measurement of QT dispersion in patients with acute myocardial infarction and nondiagnostic electrocardiograms. Acad Emerg Med 2002;9:851–854.
 
44. Sredniawa B, Musialik-Lydka A, Pasyk S. [Measurement dispersion of the QT interval and its significance in different diseases]. Pol Merkuriusz Lek 2001;11:52–55.
 
45. Saadeh AM. Relation between age, ventricular arrhythmia, left ventricular hypertrophy and QT dispersion in patients with essential hypertension. Acta Cardiol 2004;59:249–253.
 
46. Seifen E, Plunkett LM, Kennedy RH. Cardiovascular and lethal effects of cocaine in anesthetized dogs and guinea-pigs. Arch Int Pharmacodyn Ther 1989;300:241–253.
 
47. Perera R, Kraebber A, Schwartz MJ. Prolonged QT interval and cocaine use. J Electrocardiol1997;30:337–339.
 
48. Fenichel RR, Malik M, Antzelevitch C, et al. Drug-induced torsades de pointes and implications for drug development. J Cardiovasc Electrophysiol 2004;15:475–495.
 
49. Karle CA, Kiehn J. An ion channel ’addicted’ to ether, alcohol and cocaine: the HERG potassium channel. Cardiovasc Res 2002;53:6–8.
 
50. Ferreira S, et al Effects of cocaine and its major metabolites on the HERG-encoded potassium channel. J Pharmacol Exp Ther 2001;299:220–226.
 
51. Zhang S, Rajamani S, Chen Y, et al. Cocaine blocks HERG, but not KvLQT1+minK, potassium channels. Mol Pharmacol 2001;59:1069–1076.
 
52. O’Leary ME. Inhibition of human ether-a-go-go potassium channels by cocaine. Mol Pharmacol2001;59:269–277.
 
53. Wichter T, Schulze-Bahr E, Eckardt L, et al. Molecular mechanisms of inherited ventricular arrhythmias. Herz 2002;27:712–739.