Review Article

Exenatide: A Novel Approach for Treatment of Type 2 Diabetes

Authors: Nasser Mikhail, MD, MSc

Abstract

Exenatide (synthetic exendin-4) is the analog of glucagon-like peptide 1 (GLP-1), the major physiologic incretin. The latter is an intestinal hormone that enhances glucose-induced insulin secretion after meals. In addition, GLP-1 stimulates insulin synthesis, inhibits glucagon secretion, delays gastric emptying, and may promote satiety. These glucoregulatory actions help control plasma glucose in the postprandial period. However, in diabetes, the GLP-1 response to nutrient intake is impaired, leading to exacerbation of postprandial hyperglycemia. Exenatide was recently approved as adjunctive therapy in diabetic patients failing sulfonylureas and/or metformin. In clinical trials lasting 30 weeks, exenatide therapy was associated with moderate reduction in mean hemoglobin A1c (HbA1c) levels of approximately 0.8%, and an average weight loss of approximately 2 kg compared with baseline. Hypoglycemia was generally mild and occurred more commonly when exenatide was used in conjunction with sulfonylureas. The requirement of subcutaneous injections twice a day, and the frequent occurrence of nausea and vomiting, represent the main limitations of exenatide. Nevertheless, this agent may be a useful add-on therapy in obese diabetic patients with suboptimal control as a result of continuing weight gain and/or severe postprandial hyperglycemia. The introduction of GLP-1-based antidiabetic drugs is a novel and promising strategy to treat diabetes.


Key Points


* Exenatide (synthetic exendin-4) is the agonist of GLP-1, the main incretin, i.e. an intestinal hormone that enhances glucose-induced insulin secretion.


* The antidiabetic effects of exenatide include stimulation of insulin synthesis and secretion, inhibition of glucagon secretion, delaying gastric emptying and possibly promotion of early satiety.


* The advantages of exenatide include moderate HbA1c reduction (approximately 0.8%) and slight weight loss (approximately 2 kg), but the drug is associated with increased frequency of nausea and has to be administered by subcutaneous injections twice daily.


* Exenatide may be a useful add-on therapy to obese patients with uncontrolled diabetes and/or postprandial hyperglycemia.

This content is limited to qualifying members.

Existing members, please login first

If you have an existing account please login now to access this article or view purchase options.

Purchase only this article ($25)

Create a free account, then purchase this article to download or access it online for 24 hours.

Purchase an SMJ online subscription ($75)

Create a free account, then purchase a subscription to get complete access to all articles for a full year.

Purchase a membership plan (fees vary)

Premium members can access all articles plus recieve many more benefits. View all membership plans and benefit packages.

References

1. Bernard C. Leçons sur le diabète. Paris, JB Baillère, 1877.
 
2. Moore B, Edie ES, Abram JH. On the treatment of diabetes mellitus by acid extract of duodenal mucous membrane. Biochem J 1906;1:28–38.
 
3. Labarre J. Sur les possibilités d’un traitement du diabetes par l’incrétine. Bull Acad Roy Med Belg1932;12:620–634.
 
4. Loew ER, Gray JS, Ivy AC. Is a duodenal hormone involved in carbohydrate metabolism? Am J Physiol 1940;129:659–663.
 
5. Perley MJ, Kipnis DM. Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic subjects. J Clin Invest 1967;46:1954–1962.
 
6. Elrick H, Stimmler L, Hlad CJ Jr, et al. Plasma insulin response to oral and intravenous glucose administration. J Clin Endocrinol Metab 1964;24:1078–1082.
 
7. McIntyre N, Holdsworth CD, Turner DS. New interpretation of oral glucose tolerance. Lancet1964;41:20–21.
 
8. McIntyre N, Holdsworth CD, Turner DS. Intestinal factors in control of insulin secretion. J Clin Endocrinol Metab 1965;25:1317–1323.
 
9. Unger RH, Eisentraut AM. Entero-insular axis. Arch Intern Med 1969;123:261–266.
 
10. Creutzfeldt W. The incretin concept today. Diabetologia 1979;16:75–85.
 
11. Hampton SM, Morgan ML, Tredger JA, et al. Insulin and C-peptide levels after oral and intravenous glucose: contribution of enteroinsular axis to insulin secretion. Diabetes 1986;35:612–616.
 
12. Nauck MA, Homberger E, Siegel EG, et al. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab 1986;63:492–498.
 
13. Gibby OM, Hales CN. Oral glucose decreases hepatic extraction of insulin. Br Med J 1983;286:921–923.
 
14. Brown JC. A gastric inhibitory polypeptide, I: the amino acid composition and the tryptic peptides.Can J Biochem 1971;49:255–261.
 
15. Drucker DJ. Glucagon-like peptides. Diabetes 1998;47:159–169.
 
16. Lauritsen KB, Moody AJ, Christensen KC, et al. Gastric inhibitory polypeptide (GIP) and insulin release after small-bowel resection. Scand J Gastroenterol 1980;15:833–840.
 
17. Ebert R, Unger H, Creutzfeldt W. Preservation of incretin activity after removal of gastric inhibitory polypeptide (GIP) from gut extracts by immunoadsorption. Diabetologia 1983;24:449–454.
 
18. Bell GI, Santerre RF, Mullenbach GT. Hamster pre-proglucagon contains the sequence of glucagon and two related peptides. Nature 1983;302:716–718.
 
19. Theodorakis MJ, Carlson O, Michopoulos S, et al. Human duodenal enteroendocrine cells: source of both incretin peptides, GLP-1 and GIP. Am J Physiol Endocrinol Metab 2006; 290:E550–E559.
 
20. Habener JF. The incretin notion and its relevance to diabetes. Endocrinol Metab Clin North Am1993;22:775–794.
 
21. Kreymann Ghatei MA, Williams G, Bloom SR. Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet 1987;2:1300–1304.
 
22. Elahi D, McAloon-Dyke M, Fukagawa NK, et al. The insulinotropic actions of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (7-37) in normal and diabetic subjects.Regul Pept 1994;51:63–74.
 
23. Schirra J, Sturm K, Leicht P, et al. Exendin (9-39) amide is an antagonist of glucagon-like peptide-1 (7-36) amide in humans. J Clin Invest 1998;101:1421–1430.
 
24. Nauck MA, Heimesaat MM, Orskov C, et al. Preserved incretin activity of GLP-1 (7-36 amide) but not of synthetic human GIP in patients with type 2 diabetes mellitus. J Clin Invest 1993;91:301–307.
 
25. Gutniak M, Orskov C, Holst JJ, et al. Antidiabetogenic effect of glucagon-like peptide-1 (7-36) amide in normal subjects and patients with diabetes mellitus. N Engl J Med 1992;326:1316–1322.
 
26. Nathan DM, Schreiber E, Fogel H, et al. Insulinotropic action of glucagon-like peptide-I-(7-37) in diabetic and nondiabetic subjects. Diabetes Care 1992;15:270–276.
 
27. Krarup T, Saurbrey N, Moody AJ, et al. Effect of porcine gastric inhibitory polypeptide on beta-cell function in type I and type II diabetes mellitus. Metabolism 1987;36:677–682.
 
28. Meier JJ, Goetze O, Anstipp J, et al. Gastric inhibitory polypeptide does not inhibit gastric emptying in humans. Am J Physiol 2003;286:E621–E625.
 
29. Creutzfeldt WO, Kleine N, Wilms B, et al. Glucagonostatic actions and reduction of fasting hyperglycemia by exogenous glucagon-like peptide I (7-36) amide in type 1 diabetic patients. Diabetes Care 1996;19:580–586.
 
30. Behme MT, Dupre J, McDonald TJ. Glucagon-like peptide 1 improved glycemic control in type 1 diabetes. BMC Endocr Disord 2003;3:3.
 
31. Greenbaum CJ, Prigeon RL, D’Alessio DA. Impaired beta-cell function, incretin effect, and glucagon suppression in patients with type 1 diabetes who have normal fasting glucose. Diabetes 2002;51:951–957.
 
32. Mannuci E, Ognibene A, Cremasco F, et al. Glucagon-like peptide (GLP)-1 and leptin concentrations in obese patients with type 2 diabetes. Diabet Med 2000;17:713–719.
 
33. Vilsboll T, Krarup T, Deacon C, et al. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetes. Diabetes 2001;50:609–613.
 
34. Lugari R, Dei Cas A, Ugolotti D, et al. Evidence for early impairment of glucagon-like peptide 1-induced insulin secretion in human type 2 (non-insulin dependent) diabetes. Horm Metab Res2002;34:150–154.
 
35. Toft-Nielsen MB, Damholt MB, Madsbad S, et al. Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J Clin Endocrinol Metab 2001;86:3717–3723.
 
36. Vilsboll T, Agerso H, Krarup T, et al Similar elimination rates of glucagon-like peptide-1 in obese type 2 diabetic patients and healthy subjects. J Clin Endocrinol Metab 2003;88:220–224.
 
37. Rask E, Olsson T, Soderberg S, et al. Impaired incretin response after a mixed meal is associated with insulin resistance in nondiabetic men. Diabetes Care 2001;24:1640–1645.
 
38. Rask E, Olsson T, Soderberg S, et al. Insulin secretion and incretin hormones after oral glucose in non-obese subjects with impaired glucose tolerance. Metabolism 2004;53:624–631.
 
39. Forbes S, Moonan M, Robinson S, et al. Impaired circulating glucagon-like peptide-1 response to oral glucose in women with previous gestational diabetes. Clin Endocrinol (Oxf) 2005;62:51–55.
 
40. Nyholm B, Walker M, Gravholt CH, et al. Twenty-four-hour insulin secretion rates, circulating concentrations of fuel substrates and gut incretin hormones in healthy offspring of type II (non-insulin-dependent) diabetic parents: evidence of several aberrations.  | Diabetologia 1999;42:1314–1323.
 
41. Nauck MA, El-Ouaghlidi A, Gabrys B, et al. Secretion of incretin hormones (GIP and GLP-1) and incretin effect after oral glucose in first-degree relatives of patients with type 2 diabetes. Regul Pept2004;122:209–217.
 
42. Vaag AA, Holst JJ, Volund A, et al. Gut incretin hormones in identical twins discordant for non-insulin-dependent diabetes mellitus (NIDDM): evidence for decreased glucagon-like peptide 1 secretion during oral glucose ingestion in NIDDM twins. Eur J Endocrinol 1996;135:425–432.
 
43. Eng J, Kleinman WA, Singh L, et al. Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma-suspectum venom: further evidence for an exendin receptor on dispersed acini from guinea pig pancreas J Biol Chem 1992;267:7402–7405.
 
44. Young A, Blase E, Petrella E, et al. Exendin-4 is a circulating meal-related peptide in the Gila monster (Heloderma suspectum). Diabetes 1999;48 (Suppl 1):A425.
 
45. Goke R, Fehmann HC, Linn T, et al. Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an antagonist at the glucagon-like peptide-1-(7-36)-amide receptor of insulin-secreting beta-cells. J Biol Chem 1993;268:19650–19655.
 
46. Chen YE, Drucker D. Tissue-specific expression of unique mRNAs that encode pro-glucagon-derived peptides or exendin-4 in the lizard. J Biol Chem 1997;272:4108–4115.
 
47. Parkes DG, Pittner R, Jodka C, et al. Insulinotropic actions of exendin-4 and glucagon-like peptide-1 in vivo and in vitro. Metabolism 2001;50:583–589.
 
48. Thorens B, Porret A, Buhler L, et al. Cloning and functional expression of the human islet GLP-1 receptor: demonstration that exendin-4 is an agonist and exendin-(9-39) an antagonist of the receptor.Diabetes 1993;42:1678–1682.
 
49. Young AA, Gedulin BR, Bhavsar S, et al. Glucose-lowering and insulin-sensitizing actions of exendin-4: studies in obese diabetic (ob/ob, db/db) mice, diabetic fatty Zucker rats, and diabetic Rhesus monkeys (Macaca mulatta). Diabetes 1999;48:1026–1034.
 
50. Gedulin B, Lawler R, Jodka C, et al. Amylin inhibits pentagastrin-stimulated gastric acid secretion: comparison with glucagon-like peptide-1 and exendin-4 (abstract). Diabetes 1997;46 (Suppl):188A.
 
51. Nishizawa M, Nakabayashi H, Kawai K, et al. The hepatic vagal reception of intraportal GLP-1 is via receptor different from the pancreatic GLP-1 receptor. J Auton Nerv Syst 2000;80:14–21.
 
52. Edwards CM, Stanley SA, Davis R, et al. Exendin-4 reduces fasting and postprandial glucose and decreases energy intake in healthy volunteers. Am J Physiol Endocrinol Metab 2001;281:E155–E161.
 
53. Byetta® (Exenatide). Product monograph. Amylin Pharmaceuticals, 2005.
 
54. Egan JM, Clocquet AR, Elahi D. The insulinotropic effect of acute exendin-4 administered to humans: comparison of nondiabetic state to type 2 diabetes. J Clin Endocrinol Metab 2002;87:1282–1290.
 
55. Fehmann HC, Habener JF. Insulinotropic hormone glucagon-like peptide-1(7-37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma betaTC-1 cells. Endocrinology1992;130:159–166.
 
56. Kwan EP, Gaisano HY. Glucagon-like peptide 1 regulates sequential and compound exocytosis in pancreatic islet beta-cells. Diabetes 2005;54:2734–2743.
 
57. Holz GG IV, Kuhtreiber WM, Habener JF. Pancreatic beta-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1(7-37). Nature 1993;361:362–365.
 
58. Degn KB, Brock B, Juhl CB, et al. Effect of intravenous infusion of exenatide (synthetic exendin-4) on glucose-dependent insulin secretion and counterregulation during hypoglycemia. Diabetes2004;53:2397–2403.
 
59. Edwards CBM, Todd JF, Ghatei MA, et al. Subcutaneous glucagon-like peptide-I (7-36) amide is insulinotropic and can cause hypoglycaemia in fasted healthy subjects. Clin Sci 1998;96:719–724.
 
60. Toft-Nielsen M, Madsbad S, Holst JJ. Exaggerated secretion of glucagon-like peptide-1 (GLP-1) could cause reactive hypoglycaemia. Diabetologia 1998;41:1180–1186.
 
61. Unger RH. Glucagon physiology and pathophysiology. N Engl J Med 1971;285:443–449.
 
62. Baron AD, Schaffer L, Shragg P, et al. Role of hypergluconemia in maintenance of increased rates of hepatic glucose output in type II diabetics. Diabetes 1987;36:274–283.
 
63. Reaven GM, Chen YD, Golay A, et al. Documentation of hypergluconemia throughout the day in nonobese and obese patients with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metabol1987;64:106–110.
 
64. Shah P, Vella A, Basu A, et al. Lack of suppression of glucagon contributes to postprandial hyperglycemia in subjects with type 2 diabetes. J Clin Endocrinol Metab 2000;85:4053–4059.
 
65. Kolterman OG, Buse JB, Fineman MS, et al. Synthetic exendin-4 (exenatide) significantly reduces postprandial and fasting plasma glucose in subjects with type 2 diabetes. J Clin Endocrinol Metab2003;88:3082–3089.
 
66. Dupre J, Behme MT, McDonald TJ. Exendin-4 normalized post cibal glycemic excursions in type 1 diabetes. J Clin Endocrinol Metab 2004;89:3469–3473.
 
67. Nauck MA, Heimesaat MM, Behle K, et al. Effects of glucagon-like peptide 1 on counterregulatory hormone responses, cognitive functions, and insulin secretion during hyperinsulinemic, stepped hypoglycemic clamp experiments in healthy volunteers. J Clin Endocrinol Metab 2002;87:1239–1246.
 
68. Nauck MA, Niedereichholz U, Ettler R, et al. Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am J Physiol 1997;36:E981–E-988.
 
69. Layer P, Holst JJ, Grandt D, et al. Ileal release of glucagon-like peptide-1 (GLP-1): association with inhibition of gastric acid secretion in humans. Dig Dis Sci 1995;40:1074–1082.
 
70. Verdich C, Flint A, Gutzwiller JP, et al. A meta-analysis of the effect of glucagon-like peptide -1 (7-36) amide on ad libitum energy intake in humans. J Clin Endocrinol Metab 2001;86:4382–4389.
 
71. Gutzwiller JP, Goke B, Drewe J, et al. Glucagon-like peptide-1: a potent regulator of food intake in humans. Gut 1999;44:81–86.
 
72. Szayna M, Doyle ME, Betkey JA, et al. Exendin-4 decelerates food intake, weight gain, and fat deposition in Zucker rats. Endocrinology 2000;141:1936–1941.
 
73. Heine RJ, Van Gaal LF, Johns D, et al, for the GWAA Study Group. Exenatide versus insulin glargine in patients with suboptimally controlled type 2 diabetes: a randomized trial. Ann Intern Med2005;143:559–569.
 
74. Turton MD, O’Shea D, Gunn I, et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 1996;379:69–72.
 
75. Rodriguez de Fonseca F, Navarro M, Alvarez E, et al. Peripheral versus central effects of glucagon-like peptide-1 receptor agonists on satiety and body weight loss in Zucker rats. Metabolism2000;49:709–717.
 
76. D’Alessio DA, Prigeon RL, Ensinck JW. Enteral enhancement of glucose disposition by both insulin-dependent and insulin-independent processes: a physiological role of glucagon-like peptide I.Diabetes 1995;44:1433–1437.
 
77. Zander M, Madsbad S, Madsen JL, et al. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study.Lancet 2002;359:824–830.
 
78. Egan JM, Meneilly GS, Habener JF, et al. Glucagon-like peptide-1 augments insulin-mediated glucose uptake in the obese state. J Clin Endocrinol Metab 2002;87:3768–3773.
 
79. Meneilly GS, McIntosh CHS, Pederson RA, et al. Effect of glucagon-like peptide 1 (7-36 amide) on insulin-mediated glucose uptake in patients with type 1 diabetes. Diabetes Care 2003;26:837–842.
 
80. Vella A, Shah P, Basu R, et al. Effect of glucagon-like peptide 1 (7-36) amide on glucose effectiveness and insulin action in people with type 2 diabetes. Diabetes 2000;49:611–617.
 
81. Toft-Nielsen M, Madsbad S, Holst JJ. The effect of glucagons-like peptide I (GLP-I) on glucose elimination in healthy subjects depends on the pancreatic glucoregulatory hormones. Diabetes1996;45:552–556.
 
82. Ryan AS, Egan JM, Habener JF, et al. Insulinotropic hormone glucagon-like peptide-1(7-37) appears not to augment insulin-mediated glucose uptake in young men during euglycemia. J Clin Endocrinol Metab 1998;83:2399–2404.
 
83. Ahren B, Larsson H, Holst JJ. Effects of glucagon-like peptide-1 on islet function and insulin sensitivity in noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1997;82:473–478.
 
84. Saad MF, Anderson RL, Laws A, et al. A comparison between the minimal model and the glucose clamp in the assessment of insulin sensitivity across the spectrum of glucose tolerance: Insulin Resistance Atherosclerosis Study. Diabetes 1994;43:1114–1121.
 
85. DeFronzo RA, Ratner RE, Han J, et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care 2005;28:1092–1100.
 
86. Xu G, Stoffers DA, Habener JF, et al. Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved tolerance in diabetic rats. Diabetes1999;48:2270–2276.
 
87. Buse JB, Henry RR, Han J, et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care 2004;27:2628–2635.
 
88. Kendall DM, Riddle MC, Rosenstock J, et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea. Diabetes Care2005;28:1083–1091.
 
89. Nikolaidis LA, Mankad S, Sokos GG, et al. Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation2004;109:962–965.
 
90. Gutzwiller JP, Tschop S, Bock A, et al. Glucagon-like peptide-1 induces natriuresis in healthy subjects and in insulin-resistant obese men. J Clin Endocrinol Metab 2004;89:3055–3061.
 
91. Nystrom T, Gutniak MK, Zhang Q, et al. Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am J Physiol Endocrinol Metab2004;287:E1209–E1215.
 
92. Kendall DM, Kim D, Poon T, et al. Improvements in cardiovascular risk factors accompanied sustained effects on glycemia and weight reduction in patients with type 2 diabetes treated with exenatide for 82 weeks (abstract). Diabetes 2005;54(Suppl 1):A4.
 
93. Fineman MS, Bicsak TA, Shen L, et al. Effect on glycemic control of exenatide (synthetic exendin-4) additive to existing metformin and/or sulfonylurea treatment in patients with type 2 diabetes. Diabetes Care 2003;26:2370–2377.
 
94. Gutniak MK, Junitti-Berggren L, Hellstrom P, et al. Glucagon-like peptide 1 enhances the insulinotropic effect of glibenclamide in NIDDM patients and in the perfused rat pancreas. Diabetes Care1996;19:857–863.
 
95. Durfee RB, Pernoll ML. Early pregnancy risks. In: Pernoll ML, ed. Current Obstetric and Gynecologic Diagnosis and Treatment. 7th edition. Norwalk, Conn/San Mateo, Calif, Appleton & Lange, 1991, pp 300–325.
 
96. Hiles RA, Bawdon RE, Petrella EM. Ex vivo human placental transfer of the peptides pramlintide and exenatide (synthetic exendin-4). Hum Exp Toxicol 2003;22:623–628.
 
97. Linnebjerg H, Kothare P, Park S, et al. Exenatide pharmacokinetics in patients with mild to moderate renal dysfunction and end stage renal disease (abstract). Diabetes 2005;54(Suppl 1):A116.
 
98. Harder H, Nielsen L, Tu DT, et al. The effect of liraglutide, a long-acting glucagon-like peptide 1 derivative, on glycemic control, body composition, and 24-h energy expenditure in patients with type 2 diabetes. Diabetes Care 2004;27:1915–1921.
 
99. Madsbad S, Schmitz O, Ranstam J, et al. Improved glycemic control with no weight increase in patients with type 2 diabetes after once-daily treatment with the long-acting glucagon-like peptide 1 analog liraglutide (NN2211): a 12-week, double-blind, randomized, controlled trial. Diabetes Care2004;27:1335–1342.
 
100. Ahren B, Gomis R, Standl E, et al. Twelve- and 52-week efficacy of the dipeptidyl peptidase IV inhibitor LAF237 in metformin-treated patients with type 2 diabetes. Diabetes Care 2004;27:2874–2880.
 
101. Ahren B, Pacini G, Foley JE, et al. Improved meal-related beta-cell function and insulin sensitivity by the dipeptidyl peptidase IV inhibitor LAF237 in metformin-treated patients with type 2 diabetes over 1 year. Diabetes Care 2005;28:1936–1940.
 
102. Uwaifo GI, Ratner RE. Novel pharmacologic agents for type 2 diabetes. Endocrinol Metab Clin North Am 2005;34:155–197.
 
103. Zander M, Christiansen A, Madsbad S, et al. Additive effects of glucagon-like peptide 1 and pioglitazone in patients with type 2 diabetes. Diabetes Care 2004;27:1910–1914.