References
1. Ingram VM. Gene mutations in human haemoglobin: the chemical difference between normal and sickle cell haemoglobin. Nature 1957;180:326-328.
2. Bauer DE, Kamran SC, Lessard S, et al. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science 2013;342:253-257.
3. Meier ER, Fasano RM, Levett PR. A systematic review of the literature for severity predictors in children with sickle cell anemia. Blood Cells Mol Dis 2017;65:86-94.
4. Serjeant GR. Fetal hemoglobin in homozygous sickle-cell disease. Clin Haematol 1975;4:109-122.
5. Hardison RC, Blobel GA. Genetics. GWAS to therapy by genome edits? Science 2013;342:206-207.
6. Smith EC, Orkin SH. Hemoglobin genetics: recent contributions of GWAS and gene editing. Hum Mol Genet 2016;25:R99-R105.
7. Steinberg MH. Predicting clinical severity in sickle cell anaemia. Br J Haematol 2005;129:465-481.
8. Tang DC, Ebb D, Hardison RC, et al. Restoration of the CCAAT box or insertion of the CACCC motif activates <corrected] delta-globin gene expression. Blood 1997;90:421-427.
9. Akinsheye I, Alsultan A, Solovieff N, et al. Fetal hemoglobin in sickle cell anemia. Blood 2011;118:19-27.
10. Basak A, Hancarova M, Ulirsch JC, et al. BCL11A deletions result in fetal hemoglobin persistence and neurodevelopmental alterations. J Clin Invest 2015;125:2363-2368.
11. Funnell AP, Prontera P, Ottaviani V, et al. 2p15-p16.1 microdeletions encompassing and proximal to BCL11A are associated with elevated HbF in addition to neurologic impairment. Blood 2015;126:89-93.
12. Uda M, Galanello R, Sanna S, et al. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proc Natl Acad Sci U S A 2008;105:1620-1625.
13. Antoniani C, Romano O, Miccio A. Concise review: epigenetic regulation of hematopoiesis: biological insights and therapeutic applications. Stem Cells Transl Med 2017;6:2106-2114.
14. Martyn GE, Wienert B, Yang L, et al. Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding. Nat Genet 2018;50:498-503.
15. Thein SL, Menzel S, Lathrop M, et al. Control of fetal hemoglobin: new insights emerging from genomics and clinical implications. Hum Mol Genet 2009;18:R216-R223.
16. Bhatnagar P, Purvis S, Barron-Casella E, et al. Genome-wide association study identifies genetic variants influencing F-cell levels in sickle-cell patients. J Hum Genet 2011;56:316-323.
17. Galarneau G, Palmer CD, Sankaran VG, et al. Fine-mapping at three loci known to affect fetal hemoglobin levels explains additional genetic variation. Nat Genet 2010;42:1049-1051.
18. Lettre G, Sankaran VG, Bezerra MA, et al. DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc Natl Acad Sci U S A 2008;105:11869-11874.
19. Masuda T, Wang X, Maeda M, et al. Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin. Science 2016;351:285-289.
20. Thein SL, Menzel S, Peng X, et al. Intergenic variants of HBS1L-MYB are responsible for a major quantitative trait locus on chromosome 6q23 influencing fetal hemoglobin levels in adults. Proc Natl Acad Sci U S A 2007;104:11346-11351.
21. Bauer DE, Orkin SH. Hemoglobin switching' surprise: the versatile transcription factor BCL11A is a master repressor of fetal hemoglobin. Curr Opin Genet Dev 2015;33:62-70.
22. Kulozik AE, Kar BC, Satapathy RK, et al. Fetal hemoglobin levels and beta (s) globin haplotypes in an Indian populations with sickle cell disease. Blood 1987;69:1742-1746.
23. Connes P, Reid H, Hardy-Dessources MD, et al. Physiological responses of sickle cell trait carriers during exercise. Sports Med 2008;38:931-946.
25. Tsaras G, Owusu-Ansah A, Boateng FO, et al. Complications associated with sickle cell trait: a brief narrative review. Am J Med 2009;122:507-512.
26. Hayashi TY, Matsuda I, Hagiwara K, et al. Massive splenic infarction and splenic venous thrombosis observed in a patient with acute splenic syndrome of sickle cell traits on contrast-enhanced thin-slice computed tomography. Abdom Radiol (NY) 2016;41:1718-1721.
27. Gupta M, Lehl SS, Singh K, et al. Acute splenic infarction in a hiker with previously unrecognised sickle cell trait. BMJ Case Rep 2013;2013:bcr2013008931.
28. Ferster K, Eichner ER. Exertional sickling deaths in Army recruits with sickle cell trait. Mil Med 2012;177:56-59.
29. Murray MJ, Evans P. Sudden exertional death in a soldier with sickle cell trait. Mil Med 1996;161:303-305.
30. Way A, Ganesan S, McErlain M. Multiple limb compartment syndromes in a recruit with sickle cell trait. J R Army Med Corps 2011;157:182-183.
31. Weisman IM, Zeballos RJ, Martin TW, et al. Effect of Army basic training in sickle-cell trait. Arch Intern Med 1988;148:1140-1144.
32. Harris KM, Haas TS, Eichner ER, et al. Sickle cell trait associated with sudden death in competitive athletes. Am J Cardiol 2012;110:1185-1188.
33. Kark JA, Ward FT. Exercise and hemoglobin S. Semin Hematol 1994;31:181-225.
34. Nelson DA, Deuster PA, Carter R, 3rd et al. Sickle cell trait, rhabdomyolysis, and mortality among U.S. Army soldiers. N Engl J Med 2016;375:435-442.
35. Davis AM. Sickle-cell trait as a risk factor for sudden-death in physical-training-reply. N Engl J Med 1987;317:781-787.
36. Harmon KG, Drezner JA, Klossner D, et al. Sickle cell trait associated with a RR of death of 37 times in National Collegiate Athletic Association football athletes: a database with 2 million athlete-years as the denominator. Br J Sports Med 2012;46:325-330.
37. Oɼ FG, Bergeron MF, Cantrell J, et al. ACSM and CHAMP summit on sickle cell trait: mitigating risks for warfighters and athletes. Med Sci Sports Exerc 2012;44:2045-2056.
38. Mitchell BL. Sickle cell trait and sudden death-bringing it home. J Natl Med Assoc 2007;99:300-305.
39. Guindo A, Traore K, Diakite S, et al. An evaluation of concurrent G6PD (A-) deficiency and sickle cell trait in Malian populations of children with severe or uncomplicated P. falciparum malaria. Am J Hematol 2011;86:795-796.
40. Ouattara AK, Yameogo P, Diarra B, et al. Molecular heterogeneity of glucose-6-phosphate dehydrogenase deficiency in Burkina Faso: G-6-PD Betica Selma and Santamaria in people with symptomatic malaria in Ouagadougou. Mediterr J Hematol Infect Dis 2016;8:e2016029.
41. Sebastiani P, Farrell JJ, Alsultan A, et al. BCL11A enhancer haplotypes and fetal hemoglobin in sickle cell anemia. Blood Cells Mol Dis 2015;54:224-230.
42. Sebastiani P, Solovieff N, Hartley SW, et al. Genetic modifiers of the severity of sickle cell anemia identified through a genome-wide association study. Am J Hematol 2010;85:29-35.
43. Help and Documentation. Cary, NC :SAS Institute; 2002-2004.
44. Akinbami AO, Campbell AD, Han ZJ, et al. Hereditary persistence of fetal hemoglobin caused by single nucleotide promoter mutations in sickle cell trait and Hb SC disease. Hemoglobin 2016;40:64-65.
45. Hariharan P, Sawant M, Gorivale M, et al. Synergistic effect of two β globin gene cluster mutations leading to the hereditary persistence of fetal hemoglobin (HPFH) phenotype. Mol Biol Rep 2017;44:413-417.
46. Al-Allawi NA, Puehringer H, Raheem RA, et al. Genetic modifiers in β-thalassemia intermedia: a study on 102 Iraqi Arab patients. Genet Test Mol Biomarkers 2015;19:242-247.
47. Sokal R, Rohlf F. Biometry: The Principles and Practice of Statistics in Biological Research. New York:WH Freeman;2012.
48. Bacchetti P, Deeks SG, McCune JM. Breaking free of sample size dogma to perform innovative translational research. Sci Transl Med 2011;3:87ps24.