Case Report

New Anticonvulsants-New Adverse Effects

Authors: Zachary Tebb, BS, Joseph D. Tobias, MD

Abstract

Abstract:Ongoing refinements in pharmacology continue to provide new medications for the treatment of seizure disorders and other neurologic conditions. The authors present the cases of two children who developed relatively uncommon adverse effects to new anticonvulsant medications, including metabolic acidosis with topiramate and hyponatremia with oxcarbazepine. In one of our two patients, intraoperative acidosis related to topiramate was noted. Appropriate investigation with documentation of normal serum lactate resulted in the exclusion of other potentially serious causes of acidosis and in the identification of topiramate as the causative agent. In our second patient, hyponatremia and status epilepticus resulted from therapy with oxcarbazepine. Prompt recognition of hyponatremia, fluid restriction, and cessation of oxcarbazepine therapy resulted in prompt correction of the hyponatremia. We review previous reports of these adverse effects with topiramate and oxcarbazepine, describe the pathophysiology of these metabolic alterations, provide treatment strategies, and make suggestions for monitoring patients during therapy with these anticonvulsant medications.

This content is limited to qualifying members.

Existing members, please login first

If you have an existing account please login now to access this article or view purchase options.

Purchase only this article ($25)

Create a free account, then purchase this article to download or access it online for 24 hours.

Purchase an SMJ online subscription ($75)

Create a free account, then purchase a subscription to get complete access to all articles for a full year.

Purchase a membership plan (fees vary)

Premium members can access all articles plus recieve many more benefits. View all membership plans and benefit packages.

References

1. Nickel MK, Nickel C, Mitterlehner FO, et al. Topiramate treatment of aggression in female borderline personality disorder patients: a double-blind, placebo-controlled study. J Clin Psychiatry 2004;65:1515–1519.
 
2. Janowsky DS, Kraus JE, Barnhill J, et al. Effects of topiramate on aggressive, self-injurious, and disruptive/destructive behaviors in the intellectually disabled: an open-label retrospective study. J Clin Psychopharmacol 2003;23:500–504.
 
3. Rho JM, Sankar R. The pharmacologic basis of antiepileptic drug action. Epilepsia 1999;40:1471–1483.
 
4. Philippi H, Boor R, Reitter B. Topiramate and metabolic acidosis in infants and toddlers. Epilepsia2002;43:744–747.
 
5. Laskey AL, Korn DE, Moorjani BI, et al. Central hyperventilation related to administration of topiramate. Pediatr Neurol 2000;22:305–308.
 
6. Takeoka M, Holmes GL, Thiele E, et al. Topiramate and metabolic acidosis in pediatric epilepsy.Epilepsia 2001;42:387–392.
 
7. Ozer Y, Altunkaya, H. Topiramate induced metabolic acidosis (letter). Anaesthesia 2004;59:830.
 
8. Stowe CD, Bolliger T, James LP, et al. Acute mental status changes and hyperchloremic metabolic acidosis with long-term topiramate therapy. Pharmacotherapy 2000;20:105–109.
 
9. Ko CH, Kong CK. Topiramate-induced metabolic acidosis: report of two cases. Dev Med Child Neurol2001;43:701–704.
 
10. Bray RJ. Propofol infusion syndrome in children. Paediatr Anaesth 1998;8:491–499.
 
11. Cray SH, Robinson BH, Cox PN. Lactic acidemia and bradyarrhythmia in a child sedated with propofol. Crit Care Med 1998;26:2087–2092.
 
12. Culp KE, Augoustides JG, Ochrock AE, et al. Clinical management of cardiogenic shock associated with prolonged propofol infusion. Anesth Analg 2004;99:221–226.
 
13. Withington DE, Decell MK, Al Ayed T. A case of propofol toxicity: further evidence of a causal mechanism. Paediatr Anaesth 2004;14:505–508.
 
14. Kill C, Leonhardt A, Wulf H. Lactic acidosis after short-term infusion of propofol for anaesthesia in a child with osteogenesis imperfecta. Paediatr Anaesth 2003;13:823–826.
 
15. Mehta N, DeMunter C, Habibi P, et al. Short-term propofol infusions in children. Lancet1999;354:866–867.
 
16. Burow BK, Johnson ME, Packer DL. Metabolic acidosis associated with propofol in the absence of other causative factors. Anesthesiology 2004;101:239–241.
 
17. Ozer Y, Altunkaya H. Topiramate induced metabolic acidosis (letter). Anaesthesia 2004;59:830.
 
18. Groeper K, McCann, E. Topiramate and metabolic acidosis: a case series and review of the literature. Paediatric Anaesth 2005;15:167–170.
 
19. Schmidt D, Elger CE. What is the evidence that oxcarbazepine and carbamazepine are distinctly different antiepileptic agents. Epilepsy Behav 2004;5:627–635.
 
20. Guay DR. Oxcarbazepine, topiramate, zonisamide, and levetiracetam: potential use in neuropathic pain. Am J Geriatr Pharmacother 2003;1:18–37.
 
21. Adkoli S. Symptomatic hyponatremia in patients on oxcarbazepine therapy for the treatment of neuropathic pain: two case reports. J Pain Palliat Care Pharmacother 2003;17:47–51.
 
22. Ryan M, Adams AG, Larive LL. Hyponatremia and leukopenia associated with oxcarbazepine following carbamazepine therapy. Am J Health Syst Pharm 2001;58:1637–1639.
 
23. Glauser TA. Oxcarbazepine in the treatment of epilepsy. Pharmacotherapy 2001;21:904–919.
 
24. Holtmann M, Karaue M, Opp J, et al. Oxcarbazepine-induced hyponatremia and the regulation of serum sodium after replacing carbamazepine with oxcarbazepine in children. Neuropediatrics2002;33:298–300.
 
25. Borusiak P, Korn-Merker E, Holert N, et al. Hyponatremia induced by oxcarbazepine in children.Epilepsy Res 1998;30:241–246.
 
26. Sachdeo RC, Wasserstein A, Mesenbrink PJ, et al. Effects of oxcarbazepine on sodium concentration and water handling. Ann Neurol 2002;51:613–620.
 
27. Cilli AS, Algun E. Oxcarbazepine-induced syndrome of inappropriate-secretion of antidiuretic hormone (letter). J Clin Psych 2002;63:742.
 
28. Van Amelsvoort T, Bakshi R, Devaux CB, et al. Hyponatremia associated with carbamazepine and oxcarbazepine therapy: a review. Epilepsia 1994;35:181–188.