Review Article

CME Article: Ophthalmic Manifestations of Sickle Cell Disease

Authors: Adrienne W. Scott, MD

Abstract

Sickle cell disease (SCD), the most common inherited blood disorder, is characterized by defective oxygen transport. Every part of the eye can be affected by microvascular occlusions from SCD; however, the major cause of vision loss is proliferative sickle cell retinopathy (PSR). Although individuals with the HbSS genotype of SCD manifest more systemic morbidity and those with the HbSC genotype have a milder clinical course, those with HbSC have an increased risk of developing PSR and resultant vision loss. Sickle cell retinopathy has a variable phenotype, even among individuals with the same genotype. Most patients with SCD maintain good vision because the associated retinopathy occurs in the retinal periphery, and any associated “sea fan” neovascularization has a high tendency to autoinfarct and regress. Vision loss from PSR is largely preventable via regular retinal examinations and treatment as indicated. Novel retinal imaging techniques such as wide-field fluorescein angiography, spectral domain optical coherence tomography, and optical coherence tomography angiography can identify evidence of retinal microvascular occlusions in most patients with SCD. Further study is necessary to discover which individuals are at highest risk for vision loss, which of these retinal imaging modalities is clinically important, and which systemic treatments may decrease risk of vision loss from sickle cell retinopathy.

This content is limited to qualifying members.

Existing members, please login first

If you have an existing account please login now to access this article or view purchase options.

Purchase only this article ($25)

Create a free account, then purchase this article to download or access it online for 24 hours.

Purchase an SMJ online subscription ($75)

Create a free account, then purchase a subscription to get complete access to all articles for a full year.

Purchase a membership plan (fees vary)

Premium members can access all articles plus recieve many more benefits. View all membership plans and benefit packages.

References

1. Herrick JB. Peculiar elongated and sickle-shaped red blood corpuscles in a case of severe anemia. 1910. Yale J Biol Med 2001;74:179-184.
 
2. Hassell KL. Population estimates of sickle cell disease in the U.S. Am J Prev Med 2010;38(4 suppl):S512-S521.
 
3. Elagouz M, Jyothi S, Gupta B, et al. Sickle cell disease and the eye: old and new concepts. Surv Ophthalmol 2010;55:359-377.
 
4. Barabino GA, Platt MO, et al. Sickle cell biomechanics. Annu Rev Biomed Eng 2010;12:345-367.
 
5. Kato GJ, Hebbel RP, Steinberg MH, et al. Vasculopathy in sickle cell disease: biology, pathophysiology, genetics, translational medicine, and new research directions. Am J Hematol 2009;84:618-625.
 
6. Konotey-Ahulu FI. The sickle cell diseases: clinical manifestations including the “ crisis.”. Arch Intern Med 1974;133:611-619.
 
7. Sugihara K, Sugihara T, Mohandas N, et al. Thrombospondin mediates adherence of CD36+ sickle reticulocytes to endothelial cells. Blood 1992;80:2634-2642.
 
8. Swerlick RA, Eckman JR, Kumar A, et al. Alpha 4 beta 1-integrin expression on sickle reticulocytes: vascular cell adhesion molecule-1-dependent binding to endothelium. Blood 1993;82:1891-1899.
 
9. Wun T, Paglieroni T, Field CL, et al. Platelet-erythrocyte adhesion in sickle cell disease. J Investig Med 1999;47:121-127.
 
10. Hebbel RP. Adhesive interactions of sickle erythrocytes with endothelium. J Clin Invest 1997;100(11 suppl):S83-S86.
 
11. Hebbel RP. Blockade of adhesion of sickle cells to endothelium by monoclonal antibodies. N Engl J Med 2000;342:1910-1912.
 
12. Joneckis CC, Shock DD, Cunningham ML, et al. Glycoprotein IV-independent adhesion of sickle red blood cells to immobilized thrombospondin under flow conditions. Blood 1996;87:4862-4870.
 
13. Lasky LA. Selectins: interpreters of cell-specific carbohydrate information during inflammation. Science 1992;258:964-969.
 
14. Schundeln MM, Ringelstein A, Storbeck T, et al. Orbital compression syndrome in a child with sickle cell disease. J Pediatr 2014;164:671.
 
15. Janssens C, Claeys L, Maes P, et al. Orbital wall infarction in child with sickle cell disease. Acta Clin Belg 2015;70:451-452.
 
16. Ganesh A, William RR, Mitra S, et al. Orbital involvement in sickle cell disease: a report of five cases and review literature. Eye (Lond) 2001;15(Pt  ):774-780.
 
17. Ganesh A, Al-Zuhaibi S, Pathare A, et al. Orbital infarction in sickle cell disease. Am J Ophthalmol 2008;146:595-601.
 
18. Perlman JI, Forman S, Gonzalez ER. Retrobulbar ischemic optic neuropathy associated with sickle cell disease. J Neuroophthalmol 1994;14:45-48.
 
19. Adewoye AH, Ramsey J, McMahon L, et al. Lacrimal gland enlargement in sickle cell disease. Am J Hematol 2006;81:888-889.
 
20. Paton D. The conjunctival sign of sickle cell disease. Arch Ophthalmol 1961;66:90-94.
 
21. Fink AI, Funahashi T, Robinson M, et al. Conjunctival blood flow in sickle-cell disease. Preliminary report Arch Ophthalmol 1961;66:824-829.
 
22. Paton D. The conjunctival sign ox sickle-cell disease. Further observations Arch Ophthalmol 1962;68:627-632.
 
23. Galinos S, Rabb MF, Goldberg MF, et al. Hemoglobin SC disease and iris atrophy. Am J Ophthalmol 1973;75:421-425.
 
24. Chambers J, Puglisi J, Kernitsky R, et al. Iris atrophy in hemoglobin SC disease. Am J Ophthalmol 1974;77:247-249.
 
25. Acheson RW, Ford SM, Maude GH, et al. Iris atrophy in sickle cell disease. Br J Ophthalmol 1986;70:516-521.
 
26. Bergren RL, Brown GC. Neovascular glaucoma secondary to sickle-cell retinopathy. Am J Ophthalmol 1992;113:718-719.
 
27. Goldberg MF. The diagnosis and treatment of secondary glaucoma after hyphema in sickle cell patients. Am J Ophthalmol 1979;87:43-49.
 
28. Sickled erythrocytes, hyphema, and secondary glaucoma: IV. The rate and percentage of sickling of erythrocytes in rabbit aqueous humor, in vitro and in vivo. Ophthalmic Surg 1979;10:62-69.
 
29. Goldberg MF. Sickled erythrocytes, hyphema, and secondary glaucoma: I. The diagnosis and treatment of sickled erythrocytes in human hyphemas. Ophthalmic Surg 1979;10:17-31.
 
30. Goldberg MF, Dizon R, Raichand M. Sickled erythrocytes, hyphema, and secondary glaucoma: II. Injected sickle cell erythrocytes into human, monkey, and guinea pig anterior chambers: the induction of sickling and secondary glaucoma. Ophthalmic Surg 1979;10:32-51.
 
31. Scott AW, Lutty GA, Goldberg MF. Hemoglobinopathies. In: Schachat AP, Wilkinson CP, et al. Ryan SJ, eds. Retina. London:Elsevier; 2013:1071-1082.
 
32. Romayananda N, Goldberg MF, Green WR. Histopathology of sickle cell retinopathy. Trans Am Acad Ophthalmol Otolaryngol 1973;77:OP642-OP676.
 
33. Gagliano DA, Goldberg MF. The evolution of salmon-patch hemorrhages in sickle cell retinopathy. Arch Ophthalmol 1989;107:1814-1815.
 
34. Serjeant GR, Serjeant BE. The eyes. In: Serjeant GR, Serjeant BE, eds. Sickle Cell Disease. 3rd ed. New York: Oxford University Press; 2001:366-392.
 
35. Emerson GG, Lutty GA. Effects of sickle cell disease on the eye: clinical features and treatment. Hematol Oncol Clin North Am 2005;19:957-973.
 
36. Asdourian G, Nagpal KC, Goldbaum M, et al. Evolution of the retinal black sunburst in sickling haemoglobinopathies. Br J Ophthalmol 1975;59:710-716.
 
37. Fox PD, Dunn DT, Morris JS, et al. Risk factors for proliferative sickle retinopathy. Br J Ophthalmol 1990;74:172-176.
 
38. Downes SM, Hambleton IR, Chuang EL, et al. Incidence and natural history of proliferative sickle cell retinopathy: observations from a cohort study. Ophthalmology 2005;112:1869-1875.
 
39. Goldberg MF. Natural history of untreated proliferative sickle retinopathy. Arch Ophthalmol 1971;85:428-437.
 
40. Cao J, Mathews MK, McLeod DS, et al. Angiogenic factors in human proliferative sickle cell retinopathy. Br J Ophthalmol 1999;83:838-846.
 
41. Condon PI, Serjeant GR. Behaviour of untreated proliferative sickle retinopathy. Br J Ophthalmol 1980;64:404-411.
 
42. Saidkasimova S, Shalchi Z, Mahroo OA, et al. Risk factors for visual impairment in patients with sickle cell disease in London. Eur J Ophthalmol 2016; Feb29.
43. Rosenberg JB, Hutcheson KA. Pediatric sickle cell retinopathy: correlation with clinical factors. J AAPOS 2011;15:49-53.
 
44. Leveziel N, Bastuji-Garin S, Lalloum F, et al. Clinical and laboratory factors associated with the severity of proliferative sickle cell retinopathy in patients with sickle cell hemoglogin C (SC) and homozygous sickle cell (SS) disease. Medicine (Baltimore) 2011;90:372-378.
 
45. Stevens TS, Busse B, Lee CB, et al. Sickling hemoglobinopathies macular and perimacular vascular abnormalities. Arch Ophthalmol 1974;92:455-463.
 
46. Hoang QV, Hoang QV, Chau FY, et al. Central macular splaying and outer retinal thinning in asymptomatic sickle cell patients by spectral-domain optical coherence tomography. Am J Ophthalmol 2011;151:990-994.e1.
 
47. Mathew R, Bafiq R, Ramu J, et al. Spectral domain optical coherence tomography in patients with sickle cell disease. Br J Ophthalmol 2015;99:967-972.
 
48. Murthy RK, Grover S, Chalam KV. Temporal macular thinning on spectral-domain optical coherence tomography in proliferative sickle cell retinopathy. Arch Ophthalmol 2011;129:247-249.
 
49. Han IC, Tadarati M, Scott AW. Macular vascular abnormalities identified by optical coherence tomographic angiography in patients with sickle cell disease. JAMA Ophthalmol 2015;133:1337-1340.
 
50. Farber MD, Jampo LM, Fox P, et al. A randomized clinical trial of scatter photocoagulation of proliferative sickle cell retinopathy. Arch Ophthalmol 1991;109:363-367.
 
51. Shaikh S. Intravitreal bevacizumab (Avastin) for the treatment of proliferative sickle retinopathy. Indian J Ophthalmol 2008;56:259.
 
52. Siqueira RC, Costa RA, Scott IU, et al. Intravitreal bevacizumab (Avastin) injection associated with regression of retinal neovascularization caused by sickle cell retinopathy. Acta Ophthalmol Scand 2006;84:834-835.
 
53. Mitropoulos PG, Chatziralli IP, Parikakis EA, et al. Intravitreal ranibizumab for stage IV proliferative sickle cell retinopathy: a first case report. Case Rep Ophthalmol Med 2014;2014:682583.
 
54. Moshiri A, Ha NK, Ko FS, et al. Bevacizumab presurgical treatment for proliferative sickle-cell retinopathy-related retinal detachment. Retin Cases Brief Rep 2013;7:204-205.
 
55. Yawn BP, Buchanan GR, Afenyi-Annan AN, et al. Management of sickle cell disease: summary of the 2014 evidence-based report by expert panel members. JAMA 2014;312:1033-1048.