Review

Pressure Modes of Invasive Mechanical Ventilation

Authors: Benjamin D. Singer, MD, Thomas C. Corbridge, MD

Abstract

Pressure modes of invasive mechanical ventilation generate a tidal breath by delivering pressure over time. Pressure control ventilation (PC) is the prototypical pressure mode and is patient- or time-triggered, pressure-limited, and time-cycled. Other pressure modes include pressure support ventilation (PSV), pressure-regulated volume control (PRVC, also known as volume control plus [VC+]), airway pressure release ventilation (APRV), and biphasic ventilation (also known as BiLevel). Despite their complexity, modern ventilators respond to patient effort and respiratory system mechanics in a fairly predictable fashion. No single mode has consistently demonstrated superiority in clinical trials; however, empiric management with a pressure mode may achieve the goals of patient-ventilator synchrony, effective respiratory system support, adequate gas exchange, and limited ventilator-induced lung injury.

This content is limited to qualifying members.

Existing members, please login first

If you have an existing account please login now to access this article or view purchase options.

Purchase only this article ($25)

Create a free account, then purchase this article to download or access it online for 24 hours.

Purchase an SMJ online subscription ($75)

Create a free account, then purchase a subscription to get complete access to all articles for a full year.

Purchase a membership plan (fees vary)

Premium members can access all articles plus recieve many more benefits. View all membership plans and benefit packages.

References

1. Singer BD, Corbridge TC. Basic invasive mechanical ventilation. South Med J 2009;102:1238-1245.
 
2. Chiumello D, Pelosi P, Calvi E, et al. Different modes of assisted ventilation in patients with acute respiratory failure. Eur Respir J 2002;20:925-933.
 
3. Sassoon CS, Zhu E, Caiozzo VJ. Assist-control mechanical ventilation attenuates ventilator-induced diaphragmatic dysfunction. Am J Respir Crit Care Med 2004;170:626-632.
 
4. Christopher KL, Neff TA, Bowman JL, et al. Intermittent mandatory ventilation systems. Chest 1985;87:625-630.
 
5. Rappaport SH, Shpiner R, Yoshihara G, et al. Randomized, prospective trial of pressure-limited versus volume-controlled ventilation in severe respiratory failure. Crit Care Med 1994;22:22-32.
 
6. Prella M, Feihl F, Domenighetti G. Effects of short-term pressure-controlled ventilation on gas exchange, airway pressures, and gas distribution in patients with acute lung injury/ARDS: comparison with volume-controlled ventilation. Chest 2002;122:1382-1388.
 
7. Munoz J, Guerrero JE, Escalante JL, et al. Pressure-controlled ventilation versus controlled mechanical ventilation with decelerating inspiratory flow. Crit Care Med 1993;21:1143-1148.
 
8. Abraham E, Yoshihara G. Cardiorespiratory effects of pressure controlled ventilation in severe respiratory failure. Chest 1990;98:1445-1449.
 
9. Guldager H, Nielsen SL, Carl P, et al. A comparison of volume control and pressure-regulated volume control ventilation in acute respiratory failure. Crit Care 1997;1:75-77.
 
10. Riverso P, Bernardi PL, Corsa D, et al. A comparison of ventilation techniques in ARDS. Volume controlled vs pressure regulated volume control. Minerva Anestesiol 1998;64:339-343.
 
11. Jaber S, Delay JM, Matecki S, et al. Volume-guaranteed pressure-support ventilation facing acute changes in ventilatory demand. Intensive Care Med 2005;31:1181-1188.
 
12. Stock MC, Downs JB, Frolicher DA. Airway pressure release ventilation. Crit Care Med 1987;15:462-466.
 
13. Habashi NM. Other approaches to open-lung ventilation: airway pressure release ventilation. Crit Care Med 2005;33(3 suppl):S228-S240.
 
14. Downs JB, Stock MC. Airway pressure release ventilation: a new concept in ventilatory support. Crit Care Med 1987;15:459-461.
 
15. Neumann P, Golisch W, Strohmeyer A, et al. Influence of different release times on spontaneous breathing pattern during airway pressure release ventilation. Intensive Care Med 2002;28:1742-1749.
 
16. Tobin MJ, Lodato RF. PEEP, auto-PEEP, and waterfalls. Chest 1989;96:449-451.
 
17. Dart BW, Maxwell RA, Richart CM, et al. Preliminary experience with airway pressure release ventilation in a trauma/surgical intensive care unit. J Trauma 2005;59:71-76.
 
18. Kaplan LJ, Bailey H, Formosa V. Airway pressure release ventilation increases cardiac performance in patients with acute lung injury/adult respiratory distress syndrome. Crit Care 2001;5:221-226.
 
19. Hering R, Peters D, Zinserling J, et al. Effects of spontaneous breathing during airway pressure release ventilation on renal perfusion and function in patients with acute lung injury. Intensive Care Med 2002;28:1426-1433.
 
20. Putensen C, Mutz NJ, Putensen-Himmer G, et al. Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 1999;159:1241-1248.
 
21. Varpula T, Valta P, Niemi R, et al. Airway pressure release ventilation as a primary ventilatory mode in acute respiratory distress syndrome. Acta Anaesthesiol Scand 2004;48:722-731.
 
22. Rasanen J, Cane RD, Downs JB, et al. Airway pressure release ventilation during acute lung injury: a prospective multicenter trial. Crit Care Med 1991;19:1234-1241.
 
23. Putensen C, Zech S, Wrigge H, et al. Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med 2001;164:43-49.
 
24. Seymour CW, Frazer M, Reilly PM, et al. Airway pressure release and biphasic intermittent positive airway pressure ventilation: are they ready for prime time? Trauma 2007;62:1298-1309.
 
25. Rose L, Hawkins M. Airway pressure release ventilation and biphasic positive airway pressure: a systematic review of definitional criteria. Intensive Care Med 2008;34:1766-1773.