Original Article

Risk Factors for the Acquisition of Nosocomial Infection with Carbapenem-Resistant Klebsiella pneumoniae

Authors: Dandan Wu, MD, Jiachang Cai, PhD, Jin Liu, MD

Abstract

Objectives: Carbapenem-resistant Klebsiella pneumoniae (CRKP) has been increasingly reported all over the world. In this study, we aimed to investigate the risk factors for the acquisition of nosocomial CRKP infections.


Methods: We conducted a case-control study with data collected from thirty-nine patients with nosocomially acquired CRKP infection between July 2006 and July 2008. Controls were selected at a ratio of 1:2 from patients with nosocomial carbapenem-susceptible Klebsiella pneumoniae (CSKP) infection and were matched with CRKP cases for site of infection and the date of hospital admission (± within 5 days). T test, chi-square test, and logistic regression were used for statistical analysis.


Results: Bivariable analysis showed that the age of the patients (P = 0.038), days of hospital stay prior to isolation of Klebsiella pneumoniae (K. pneumoniae) (P = 0.043), altered consciousness (P = 0.007), intensive care unit (ICU) admission within two weeks (P = 0.003), tracheal intubation (P = 0.027), mechanical ventilation (P = 0.009), number of changes in antibiotics ≥4 (P = 0.001), exposure to carbapenems (P = 0.002), exposure to fourth-generation cephalosporins (P = 0.027), and exposure to piperacillin-tazobactams/cefoperazone-sulbactams (P = 0.043) and glycopeptides (P = 0.042) were related to CRKP infection. The multivariable analysis showed that ICU admission (within two weeks) [odds ratio (OR):4.68, 95% confidence intervals (CI):1.15–19.09, P = 0.031], exposure to carbapenems (OR: 12.69, 95% CI: 2.09–77.10, P = 0.006) and exposure to glycopeptides (OR: 3.57, 95% CI: 1.11–11.42, P = 0.032) were independent risk factors for nosocomial CRKP infections.


Conclusion: Several factors are related to CRKP infections. ICU admission (within two weeks) or prior exposure to carbapenems or glycopeptides are independent risk factors for the acquisition of nosocomial CRKP infections.


Key Points


* The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) has been increasingly reported with the widespread use of carbapenems.


* This study found that intensive care unit (ICU) admission within two weeks, or prior exposure to carbapenems or glycopeptides were independent risk factors for the acquisition of nosocomial CRKP infections.


* The practice of aseptic invasive procedures, use of universal precautions, and reasonable and judicious antibiotic utilization (especially carbapenems) are critical for the control of CRKP emergence and spread.

This content is limited to qualifying members.

Existing members, please login first

If you have an existing account please login now to access this article or view purchase options.

Purchase only this article ($25)

Create a free account, then purchase this article to download or access it online for 24 hours.

Purchase an SMJ online subscription ($75)

Create a free account, then purchase a subscription to get complete access to all articles for a full year.

Purchase a membership plan (fees vary)

Premium members can access all articles plus recieve many more benefits. View all membership plans and benefit packages.

References

1. Bradford PA, Bratu S, Urban C, et al. Emergence of carbapenem-resistant Klebsiella species possessing the class A carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM-30 beta-lactamases in New York City. Clin Infect Dis 2004;39:55–60.
 
2. Pasteran FG, Otaegui L, Guerriero L, et al. Klebsiella pneumoniae Carbapenemase-2, Buenos Aires, Argentina. Emerg Infect Dis 2008;14:1178–1180.
 
3. MacKenzie FM, Forbes KJ, Dorai-John T, et al. Emergence of a carbapenem-resistant Klebsiella pneumoniaeLancet 1997;350:783.
 
4. Cai JC, Zhou HW, Zhang R, et al. Emergence of Serratia marcescensKlebsiella pneumoniae, andEscherichia coli isolates possessing the plasmid-mediated carbapenem-hydrolyzing beta-lactamase KPC-2 in intensive care units of a Chinese hospital. Antimicrob Agents Chemother 2008;52:2014–2018.
 
5. Wei ZQ, Du XX, Yu YS, et al. Plasmid-mediated KPC-2 in a Klebsiella pneumoniae isolate from China. Antimicrob Agents Chemother 2007;51:763–765.
 
6. Zhang R, Zhou HW, Cai JC, et al. Plasmid-mediated carbapenem-hydrolysing beta-lactamase KPC-2 in carbapenem-resistant Serratia marcescens isolates from Hangzhou, China. J Antimicrob Chemother 2007;59:574–576.
 
7.Teo JW, Ng KY, Lin RT. Detection and genetic characterisation of qnrB in hospital isolates of Klebsiella pneumoniae in Singapore. Int J Antimicrob Agents 2009;33:177–180.
 
8. Woodford N, Zhang J, Warner M, et al. Arrival of Klebsiella pneumoniae producing KPC carbapenemase in the United Kingdom. J Antimicrob Chemother 2008;62:1261–1264.
 
9. Center for Disease Control and Prevention (CDC): guidance for control of infections with carbapenem-resistant or carbapenemase-producing Enterobacteriaceae in acute care facilities. MMWR Morb Mortal Wkly Rep 2009;58:256–260. Available at: http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5810a4.htm. Accessed March 20, 2009.
 
10. Hidron AI, Edwards JR, Patel J, et al; National Healthcare Safety Network Team; Participating National Healthcare Safety Network Facilities. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect Control Hosp Epidemiol 2008;29:996.
 
11. Wang F. CHINET 2005 surveillance of bacterial resistance in China. Chin J Infect Chemother 2006;6:289–295.
 
12. Ye S, Yang Q, Yu Y. CHINET 2005 surveillance of antimicrobial resistance in Escherichia coli andKlebsiella pneumoniaeChin J Infect Chemother 2007;7:283–286.
 
13. Falagas ME, Rafailidis PI, Kofteridis D, et al. Risk factors of carbapenem-resistant Klebsiella pneumoniae infections: a matched case control study. J Antimicrob Chemother 2007;60:1124–1130.
 
14. Kwak YG, Choi SH, Choo EJ, et al. Risk factors for the acquisition of carbapenem-resistantKlebsiella pneumoniae among hospitalized patients. Microb Drug Resist 2005;11:165–169.
 
15. Schwaber MJ, Klarfeld-Lidji S, Navon-Venezia S, et al. Predictors of carbapenem-resistant Klebsiella pneumoniae acquisition among hospitalized adults and effect of acquisition on mortality. Antimicrob Agents Chemother 2008;52:1028–1033.
 
16. Bratu S, Landman D, Haag R, et al. Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: a new threat to our antibiotic armamentarium. Arch Intern Med 2005;165:1430–1435.
 
17. Urban C, Bradford PA, Tuckman M, et al. Carbapenem-resistant Escherichia coli harboringKlebsiella pneumoniae carbapenemase beta-lactamases associated with long-term care facilities. Clin Infect Dis 2008;46:e127–e130.
 
18. Michalopoulos A, Virtzili S, Rafailidis P, et al. Intravenous fosfomycin for the treatment of nosocomial infections caused by carbapenem-resistant Klebsiella pneumoniae in critically ill patients: a prospective evaluation. Clin Microbiol Infect 2010;16:184–186.
 
19. Lee SO, Kim NJ, Choi SH, et al. Risk factors for acquisition of imipenem-resistant Acinetobacter baumannii: a case-control study. Antimicrob Agents Chemother 2004;48:224–248.
 
20. Zavascki AP, Cruz RP, Goldani LZ. Risk factors for imipenem-resistant Pseudomonas aeruginosa: a comparative analysis of two case-control studies in hospitalized patients. J Hosp Infect 2005;59:96–101.
 
21. Yigit H, Queenan AM, Anderson GJ, et al. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniaeAntimicrob Agents Chemother 2001;45:1151–1161.
 
22. Woodford N, Tierno PM Jr, Young K, et al. Outbreak of Klebsiella pneumoniae producing a new carbapenem-hydrolyzing class A beta-lactamase, KPC-3, in a New York Medical Center. Antimicrob Agents Chemother 2004;48:4793–4799.
 
23. Villegas MV, Lolans K, Correa A, et al. First identification of Pseudomonas aeruginosa isolates producing a KPC-type carbapenem-hydrolyzing beta-lactamase. Antimicrob Agents Chemother 2007;51:1553–1555.
 
24.Navon-Venezia S, Chmelnitsky I, Leavitt A, et al. Plasmid-mediated imipenem-hydrolyzing enzyme KPC-2 among multiple carbapenem-resistant Escherichia coli clones in Israel. Antimicrob Agents Chemother 2006;50:3098–3101.
 
25. Cai JC, Zhou HW, Chen GX, et al. Detection of plasmid-mediated carbapenem-hydrolyzing beta-lactamase KPC-2 in a strain of carbapenem-resistant Enterobacter cloacaeZhonghua Yi Xue Za Zhi 2008;88:135–138.
 
26. Zhang R, Yang L, Cai JC, et al. High-level carbapenem resistance in a Citrobacter freundii clinical isolate is due to a combination of KPC-2 production and decreased porin expression. J Med Microbiol 2008;57:332–337.
 
27. Landman D, Bratu S, Quale J. Contribution of OmpK36 to carbapenem susceptibility in KPC-producing Klebsiella pneumoniaeJ Med Microbiol 2009;58:1303–1308.
 
28. Doménech-Sánchez A, Hernández-Allés S, Martínez-Martínez L, et al. Identification and characterization of a new porin gene of Klebsiella pneumoniae: its role in beta-lactam antibiotic resistance. J Bacteriol 1999;181:2726–2732.
 
29. Pultz NJ, Stiefel U, Donskey CJ. Effects of daptomycin, linezolid, and vancomycin on establishment of intestinal colonization with vancomycin-resistant Enterococci and extended-spectrum-beta-lactamase-producing Klebsiella pneumoniae in mice. Antimicrob Agents Chemother 2005;49:3513–3516.