Abstract | November 17, 2023
Hydrocephalus: A review of etiology driven treatment strategies
Learning Objectives
- To understand the molecular pathogenesis of hydrocephalus.
- Apply peripheral nervous system understanding to CNS.
- Highlight current treatment options for hydrocephalus.
- Propose non-invasive treatment strategies synergistic to the current treatment.
Hydrocephalus is a broad term that is usually understood as an excess amount of cerebrospinal fluid (CSF) accumulation resulting in the expansion of the cerebral ventricular system. The CSF is produced by the choroid plexus, mainly in the lateral ventricles, and it flows between the third and fourth ventricles and eventually to the subarachnoid space (SAS). It is critical in brain protection, removal of toxic waste metabolites and is important for proper neuronal function. Hydrocephalus is a neurological pathology linked to high morbidity associated with neurocognitive and motor impairment. It is classified as either communicating or non-communicating and has numerous causes, including, but not limited to, congenital, hemorrhage, bacterial infection, tumor, or brain injury. Treatment typically is surgical with shunt placement for example the endoscopic third ventriculostomy (ETV) technique. In addition, some modified forms of treatment couple ETV with choroid plexus cauterization (CPC) due to the function of the choroid plexus in producing CSF. Still, there is mixed data on the impact with a suggestion of a time-dependent benefit. However, these surgical interventions have high failure risks and complications that require re-intervention, further increasing morbidity and mortality risk. To date, there are few non-surgical treatment strategies, but many have proved limited benefit and many patients still require surgical treatment. This analysis lays out the typical treatment strategies and explores new, innovative interventions, especially highlighting the studies which showed the importance of brain parenchymal tissue playing an active role in the pathogenesis of hydrocephalus. If the latter has merit, the surgical interventions can have more success with a synergistic non-interventional treatment.
References and Resources
- Aghayev, K., Bal, E., Rahimli, T., Mut, M., Balcı, S., Vrionis, F., & Akalan, N. (2012). Aquaporin-4 expression is not elevated in mild hydrocephalus. Acta Neurochirurgica, 154(4), 753–759. https://doi.org/10.1007/s00701-011-1241-9
- Agyei, A. A., Miles, J. D., & Nagra, G. (2021). Rethinking Hydrocephalus via Interventional Pathophysiology. In R. D. Campbell (Ed.), Hydrocephalus: From Diagnosis to Treatment. Nova Science Publishers.
- Beggiora, P. D. S., Da Silva, S. C., Rodrigues, K. P., Almeida, T. A. D. L., Sampaio, G. B., Silva, G. A. P. D. M., Machado, H. R., & Lopes, L. D. S. (2022). Memantine associated with ventricular-subcutaneous shunt promotes behavioral improvement, reduces reactive astrogliosis and cell death in juvenile hydrocephalic rats. Journal of Chemical Neuroanatomy, 125, 102165. https://doi.org/10.1016/j.jchemneu.2022.102165
- Blazer-Yost, B. L. (2023). Consideration of Kinase Inhibitors for the Treatment of Hydrocephalus. International Journal of Molecular Sciences, 24(7), 6673. https://doi.org/10.3390/ijms24076673
Carbrey, J. M., & Agre, P. (2009). Discovery of the Aquaporins and Development of the Field. In E. Beitz (Ed.), Aquaporins (Vol. 190, pp. 3–28). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-79885-9_1 - Del Bigio, M. R., & Di Curzio, D. L. (2015). Nonsurgical therapy for hydrocephalus: A comprehensive and critical review. Fluids and Barriers of the CNS, 13(1), 3. https://doi.org/10.1186/s12987-016-0025-2
- Dewan, M. C., Rattani, A., Mekary, R., Glancz, L. J., Yunusa, I., Baticulon, R. E., Fieggen, G., Wellons, J. C., Park, K. B., & Warf, B. C. (2018). Global hydrocephalus epidemiology and incidence: Systematic review and meta-analysis. Journal of Neurosurgery, 1–15. https://doi.org/10.3171/2017.10.JNS17439
- Di Curzio, D. L., Nagra, G., Mao, X., & Del Bigio, M. R. (2018). Memantine treatment of juvenile rats with kaolin-induced hydrocephalus. Brain Research, 1689, 54–62. https://doi.org/10.1016/j.brainres.2018.04.001
- Ellenbogen, Y., Brar, K., Yang, K., Lee, Y., & Ajani, O. (2020). Comparison of endoscopic third ventriculostomy with or without choroid plexus cauterization in pediatric hydrocephalus: A systematic review and meta-analysis. Journal of Neurosurgery: Pediatrics, 26(4), 371–378. https://doi.org/10.3171/2020.4.PEDS19720
- Enslin, J. M. N., Thango, N. S., Figaji, A., & Fieggen, G. A. (2021). Hydrocephalus in Low and Middle-Income Countries—Progress and Challenges. Neurology India, 69(8), 292. https://doi.org/10.4103/0028-3886.332285
- Fowler, J. B., De Jesus, O., & Mesfin, F. B. (2023). Ventriculoperitoneal Shunt. Treasure Island (FL): StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK459351/
- Gutierrez-Murgas, Y., & Snowden, J. N. (2014). Ventricular shunt infections: Immunopathogenesis and clinical management. Journal of Neuroimmunology, 276(1–2), 1–8. https://doi.org/10.1016/j.jneuroim.2014.08.006
- Hanak, B. W., Bonow, R. H., Harris, C. A., & Browd, S. R. (2017). Cerebrospinal Fluid Shunting Complications in Children. Pediatric Neurosurgery, 52(6), 381–400. https://doi.org/10.1159/000452840
- Hochstetler, A. E., Smith, H. M., Preston, D. C., Reed, M. M., Territo, P. R., Shim, J. W., Fulkerson, D., & Blazer-Yost, B. L. (n.d.). TRPV4 antagonists ameliorate ventriculomegaly in a rat model of hydrocephalus. JCI Insight, 5(18), e137646. https://doi.org/10.1172/jci.insight.137646
- Hochstetler, A., Raskin, J., & Blazer-Yost, B. L. (2022). Hydrocephalus: Historical analysis and considerations for treatment. European Journal of Medical Research, 27(1), 168. https://doi.org/10.1186/s40001-022-00798-6
- International randomised controlled trial of acetazolamide and furosemide in posthaemorrhagic ventricular dilatation in infancy. International PHVD Drug Trial Group. (1998). Lancet (London, England), 352(9126), 433–440.
- Koleva, M., & De Jesus, O. (2023). Hydrocephalus. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK560875/
- Lidén, Å., Berg, A., Nedrebø, T., Reed, R. K., & Rubin, K. (2006). Platelet-Derived Growth Factor BB–Mediated Normalization of Dermal Interstitial Fluid Pressure After Mast Cell Degranulation Depends on β3 but Not β1 Integrins. Circulation Research, 98(5), 635–641. https://doi.org/10.1161/01.RES.0000207393.67851.d4
- Lund, T., & Reed, R. K. (1994). ALPHA-TRINOSITOL INHIBITS EDEMA GENERATION AND ALBUMIN EXTRAVASATION IN THERMALLY INJURED SKIN. Journal of Trauma and Acute Care Surgery, 36(6), 761.
- Lylyk, P., Lylyk, I., Bleise, C., Scrivano, E., Lylyk, P. N., Beneduce, B., Heilman, C. B., & Malek, A. M. (2022). First-in-human endovascular treatment of hydrocephalus with a miniature biomimetic transdural shunt. Journal of NeuroInterventional Surgery, 14(5), 495–499. https://doi.org/10.1136/neurintsurg-2021-018136
- Mazzola, C. A., Choudhri, A. F., Auguste, K. I., Limbrick, D. D., Rogido, M., Mitchell, L., & Flannery, A. M. (2014). Pediatric hydrocephalus: Systematic literature review and evidence-based guidelines. Part 2: Management of posthemorrhagic hydrocephalus in premature infants. Journal of Neurosurgery: Pediatrics, 14(Supplement_1), 8–23. https://doi.org/10.3171/2014.7.PEDS14322
- Miyake, H., Ohta, T., Kajimoto, Y., & Deguchi, J. (1999). Diamox® Challenge Test to Decide Indications for Cerebrospinal Fluid Shunting in Normal Pressure Hydrocephalus. Acta Neurochirurgica, 141(11), 1187–1193. https://doi.org/10.1007/s007010050417
- Nagra, G. (2010). Extracellular fluid systems in the brain and the pathogenesis of hydrocephalus. University of Toronto. https://tspace.library.utoronto.ca/bitstream/1807/26309/5/Nagra_Gurjit_201011_PhD_thesis.pdf
- Nagra, G., Koh, L., Aubert, I., Kim, M., & Johnston, M. (2009). Intraventricular injection of antibodies to β1-integrins generates pressure gradients in the brain favoring hydrocephalus development in rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 297(5), R1312–R1321. https://doi.org/10.1152/ajpregu.00307.2009
- Nagra, G., Koh, L., Zakharov, A., Armstrong, D., & Johnston, M. (2006). Quantification of cerebrospinal fluid transport across the cribriform plate into lymphatics in rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 291(5), R1383–R1389. https://doi.org/10.1152/ajpregu.00235.2006
- Nagra, G., Wagshul, M. E., Rashid, S., Li, J., McAllister, J. P., & Johnston, M. (2010). Elevated CSF outflow resistance associated with impaired lymphatic CSF absorption in a rat model of kaolin-induced communicating hydrocephalus. Cerebrospinal Fluid Research, 7(1), 4. https://doi.org/10.1186/1743-8454-7-4
- Oshio, K., Watanabe, H., Song, Y., Verkman, A. S., & Manley, G. T. (2005). Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel Aquaporin‐1. The FASEB Journal, 19(1), 76–78. https://doi.org/10.1096/fj.04-1711fje
- Paul, L., Madan, M., Rammling, M., Chigurupati, S., Chan, S. L., & Pattisapu, J. V. (2011). Expression of Aquaporin 1 and 4 in a Congenital Hydrocephalus Rat Model. Neurosurgery, 68(2), 462–473. https://doi.org/10.1227/NEU.0b013e3182011860
- Pindrik, J., Riva-Cambrin, J., Kulkarni, A. V., Alvey, J. S., Reeder, R. W., Pollack, I. F., Wellons, J. C., Jackson, E. M., Rozzelle, C. J., Whitehead, W. E., Limbrick, D. D., Naftel, R. P., Shannon, C., McDonald, P. J., Tamber, M. S., Hankinson, T. C., Hauptman, J. S., Simon, T. D., Krieger, M. D., … __. (2020). Surgical resource utilization after initial treatment of infant hydrocephalus: Comparing ETV, early experience of ETV with choroid plexus cauterization, and shunt insertion in the Hydrocephalus Clinical Research Network. Journal of Neurosurgery: Pediatrics, 26(4), 337–345. https://doi.org/10.3171/2020.4.PEDS19632
- Rodt, S. A., Ahlén, K., Berg, A., Rubin, K., & Reed, R. K. (1996). A novel physiological function for platelet-derived growth factor-BB in rat dermis. The Journal of Physiology, 495(Pt 1), 193–200.
- Rodt, S. A., Reed, R. K., Ljungström, M., Gustafsson, T. O., & Rubin, K. (1994). The anti-inflammatory agent alpha-trinositol exerts its edema-preventing effects through modulation of beta 1 integrin function. Circulation Research, 75(5), 942–948. https://doi.org/10.1161/01.RES.75.5.942
- Skjolding, A. D., Rowland, I. J., Søgaard, L. V., Praetorius, J., Penkowa, M., & Juhler, M. (2010). Hydrocephalus induces dynamic spatiotemporal regulation of aquaporin-4 expression in the rat brain. Cerebrospinal Fluid Research, 7(1), 20. https://doi.org/10.1186/1743-8454-7-20
- Stricker, S., Guzman, R., Blauwblomme, T., & Danielpour, M. (2022). Is the Choroid Plexus Needed? Pediatric Neurosurgery, 57(5), 301–305. https://doi.org/10.1159/000526488
- Toft-Bertelsen, T. L., Barbuskaite, D., Heerfordt, E. K., Lolansen, S. D., Andreassen, S. N., Rostgaard, N., Olsen, M. H., Norager, N. H., Capion, T., Rath, M. F., Juhler, M., & MacAulay, N. (2022). Lysophosphatidic acid as a CSF lipid in posthemorrhagic hydrocephalus that drives CSF accumulation via TRPV4-induced hyperactivation of NKCC1. Fluids and Barriers of the CNS, 19(1), 69. https://doi.org/10.1186/s12987-022-00361-9
- Verkman, A. S., Tradtrantip, L., Smith, A. J., & Yao, X. (2017). Aquaporin Water Channels and Hydrocephalus. Pediatric Neurosurgery, 52(6), 409–416. https://doi.org/10.1159/000452168
- Warf, B. C. (2005). Comparison of endoscopic third ventriculostomy alone and combined with choroid plexus cauterization in infants younger than 1 year of age: A prospective study in 550 African children. Journal of Neurosurgery: Pediatrics, 103(6), 475–481. https://doi.org/10.3171/ped.2005.103.6.0475
- Zhang, J., Bhuiyan, M. I. H., Zhang, T., Karimy, J. K., Wu, Z., Fiesler, V. M., Zhang, J., Huang, H., Hasan, M. N., Skrzypiec, A. E., Mucha, M., Duran, D., Huang, W., Pawlak, R., Foley, L. M., Hitchens, T. K., Minnigh, M. B., Poloyac, S. M., Alper, S. L., … Deng, X. (2020). Modulation of brain cation-Cl− cotransport via the SPAK kinase inhibitor ZT-1a. Nature Communications, 11, 78. https://doi.org/10.1038/s41467-019-13851-6
- Zhang, Z., Tan, Q., Guo, P., Huang, S., Jia, Z., Liu, X., Feng, H., & Chen, Y. (2022). NLRP3 inflammasome-mediated choroid plexus hypersecretion contributes to hydrocephalus after intraventricular hemorrhage via phosphorylated NKCC1 channels. Journal of Neuroinflammation, 19(1), 163. https://doi.org/10.1186/s12974-022-02530-x