3. Baskaran AB, Kumthekar P, Heimberger AB, et al. American Society of Clinical Oncology 2021 Annual Meeting updates on primary brain tumors and CNS metastatic tumors. Future Oncol 2021;17:4425–4429.
4. Bycroft C, Freeman C, Petkova D, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 2018;562:203–209.
5. Chen Z. Precision public health in China: opportunities and challenges. CCDC Wkly 2022;4: 695–696.
6. Chen R. Early bioinformatics research in China. Quant Biol 2021;9:242–250.
7. Esteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare. Nat Med 2019;25:24–29.
9. Denny JC, Collins FS. Precision medicine in 2030—seven ways to transform healthcare. Cell 2021;184:1415–1419.
10. Méndez-Vidal C, Bravo-Gil N, Pérez-Florido J, et al. A genomic strategy for precision medicine in rare diseases: integrating customized algorithms into clinical practice. J Transl Med 2025;23:86.
12. Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med 2015;372: 793–795.
13. Girisha KM, Moosa S. Genomic testing in low- and middle-income countries (LMIC). Eur J Hum Genet 2024;32:1193–1194.
14. Chu KM, Weiser TG. Real-world implementation challenges in low-resource settings. Lancet Glob Health 2021;9:e1341–e1342.
15. Knoppers BM. Framework for responsible sharing of genomic and health-related data. HUGO J 2014;8:3.
16. Rajkomar A, Hardt M, Howell MD, et al. Ensuring fairness in machine learning to advance health equity. Ann Intern Med 2018;169:866–872.
17. Turro E, Astle WJ, Megy K, et al. Whole-genome sequencing of patients with rare diseases in a national health system. Nature 2020;583:96–102.
18. Smedley D, Smith KR, Martin A, et al. 100,000 Genomes pilot on rare-disease diagnosis in health care—preliminary report. N Engl J Med 2021;385:1868–1880.
19. Sturm AC, Knowles JW, Gidding SS, et al. Clinical genetic testing for familial hypercholesterolemia: JACC Scientific Expert Panel. J Am Coll Cardiol 2018;72:662–680.
20. Parsamanesh N, Kooshkaki O, Siami H, et al. Gene and cell therapy approaches for familial hypercholesterolemia: an update. Drug Discov Today 2023;28:103470.
21. Koretsky MJ, Alvarado C, Makarious MB, et al. Genetic risk factor clustering within and across neurodegenerative diseases. Brain 2023;146:4486–4494.
22. Hirakawa MP, Krishnakumar R, Timlin JA, et al. Gene editing and CRISPR in the clinic: current and future perspectives. Biosci Rep 2020;40:BSR20200127.
23. Li T, Yang Y, Qi H, et al. CRISPR/Cas9 therapeutics: progress and prospects. Signal Transduct Target Ther 2023;8:36.
24. Bhinder B, Gilvary C, Madhukar NS, et al. Artificial intelligence in cancer research and precision medicine. Cancer Discov 2021;11:900–915.
25. Brlek P, Bulić L, Bračić M, et al. Implementing whole genome sequencing (WGS) in clinical practice: advantages, challenges, and future perspectives. Cells 2024;13:504.
26. Ma L, Guo H, Zhao Y, et al. Liquid biopsy in cancer: current status, challenges and future prospects. Sig Transduct Target Ther 2024;9:336.
27. Manolio TA, Chisholm RL, Ozenberger B, et al. Implementing genomic medicine in the clinic: the future is here. Genet Med 2013;15:258–267.
28. Liu J, Zhao H, Huang Y, et al. Genome-wide cell-free DNA methylation analyses improve accuracy of non-invasive diagnostic imaging for early-stage breast cancer. Mol Cancer 2021;20:36.
29. Patil BM, Joshi RC, Toshniwal D. (2010). Hybrid prediction model for Type-2 diabetic patients. Expert Syst Appl 2010;37:8102–8108.
30. Fregoso-Aparicio L, Noguez J, Montesinos L, et al. Machine learning and deep learning predictive models for type 2 diabetes: a systematic review. Diabetol Metab Syndr 2021;13:148.
31. Long H, Yin H, Wang L, et al. The critical role of epigenetics in systemic lupus erythematosus and autoimmunity. J Autoimmun 2016;74:118–138.
32. Zhang Z, Zhang R. Epigenetics in autoimmune diseases: pathogenesis and prospects for therapy. Autoimmun Rev 2015;14:854–863.
33. Mazzone R, Zwergel C, Artico M, et al. The emerging role of epigenetics in human autoimmune disorders. Clin Epigenet 2019;11:34.
34. Gupta B, Hawkins RD. Epigenomics of autoimmune diseases. Immunol Cell Biol 2015;93: 271–276.
35. Chen X, Miragaia RJ, Natarajan KN, et al. A rapid and robust method for single cell chromatin accessibility profiling. Nat Commun 2018;9:5345.
36. Villanueva L, Álvarez-Errico D, Esteller M. The Contribution of epigenetics to cancer immunotherapy. Trends Immunol 2020;41:676–691.
37. Papalexi E, Satija R. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat Rev Immunol 2018;18:35–45.
38. Ke M, Elshenawy B, Sheldon H, et al. Single cell RNA-sequencing: a powerful yet still challenging technology to study cellular heterogeneity. Bioessays 2022;44:e2200084.
39. Zeng L, Yang K, Zhang T, et al. Research progress of single-cell transcriptome sequencing in autoimmune diseases and autoinflammatory disease: a review. J Autoimmun 2022;133: 102919.
40. Kelsey G, Stegle O, Reik W. Single-cell epigenomics: recording the past and predicting the future. Science 2017;358:69–75.
41. Aradhya S, Facio FM, Metz H, et al. Applications of artificial intelligence in clinical laboratory genomics. Am J Med Genet C Semin Med Genet 2023;193:e32057.
42. Álvarez-Machancoses Ó, DeAndrés Galiana EJ, Cernea A, et al. On the role of artificial intelligence in genomics to enhance precision medicine. Pharmgenomics Pers Med 2020;13: 105–119.
43. Chafai N, Bonizzi L, Botti S, et al. Emerging applications of machine learning in genomic medicine and healthcare. Crit Rev Clin Lab Sci 2024;61:140–163.
44. Quazi S. Artificial intelligence and machine learning in precision and genomic medicine. Med Oncol 2022;39:120.
45. Shajari S, Kuruvinashetti K, Komeili A, et al. The emergence of AI-based wearable sensors for digital health technology: a review. Sensors (Basel) 2023;23:9498.
46. Xie Y, Lu L, Gao F, et al. Integration of artificial intelligence, blockchain, and wearable technology for chronic disease management: a new paradigm in smart healthcare. Curr Med Sci 2021;41:1123–1133.
47. McDermott JH, Leach M, Sen D, et al. The role of CYP2C19 genotyping to guide antiplatelet therapy following ischemic stroke or transient ischemic attack. Expert Rev Clin Pharmacol 2022;15:811–825.
49. Etienne-Grimaldi M-C, Pallet N, Boige V, et al. Current diagnostic and clinical issues of screening for dihydropyrimidine dehydrogenase deficiency. Eur J Cancer 2022;181:3–17.
50. Lešnjaković L, Ganoci L, Bilić I, et al. DPYD genotyping and predicting fluoropyrimidine toxicity: where do we stand? Pharmacogenomics 2023;24:93–106.
51. Henricks LM, Lunenburg CATC, de Man FM, et al. DPYD genotype-guided dose individualisation of fluoropyrimidine therapy in patients with cancer: a prospective safety analysis. Lancet Oncol 2018;19:1459–1467.
52. Taherdoost H, Ghofrani A. AI’s role in revolutionizing personalized medicine by reshaping pharmacogenomics and drug therapy. Intell Pharm 2024;2:643–650.
53. Singh S, Kumar R, Payra S, et al. Artificial intelligence and machine learning in pharmacological research: bridging the gap between data and drug discovery. Cureus 2023;15:e44359.
54. Pirmohamed M. Personalized pharmacogenomics: predicting efficacy and adverse drug reactions. Annu Rev Genomics Hum Genet 2014;15:349–370.
55. Noor J, Chaudhry A, Noor R, et al. Advancements and applications of liquid biopsies in oncology: a narrative review. Cureus 2023;15:e42731.
56. Pacesa M, Pelea O, Jinek M. Past, present, and future of CRISPR genome editing technologies. Cell 2024;187:1076–1100.
57. Alowais SA, Alghamdi SS, Alsuhebany N, et al. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Med Educ 2023;23:689.
58. Mohammed Yakubu A, Chen YP. Ensuring privacy and security of genomic data and functionalities. Brief Bioinform 2020;21:511–526.
59. Antoniadi AM, Du Y, Guendouz Y, et al. Current challenges and future opportunities for XAI in machine learning-based clinical decision support systems: a systematic review. Appl Sci 2021;11:5088.
60. Char DS, Shah NH, Magnus D. Implementing machine learning in health care—addressing ethical challenges. N Engl J Med 2018;378:981–983.
61. National Academies of Sciences, Engineering, and Medicine. Human Genome Editing: Science, Ethics, and Governance. Washington, DC: The National Academies Press; 2017.