Spirituality/Medicine Interface Project

Current Status of Research Using Human Embryonic Stem Cells

Authors: William L. Ledger, MA, DPhil

Abstract

Stem cells are undifferentiated and pluripotent–they are able to transform into a number of mature cell types, given the correct environment. A stem cell culture is capable of self-replication and, hence, has a theoretically infinite capacity for self-renewal. In essence, stem cells can be obtained from three sources: adult, fetal and embryonic. While there are many sources of adult stem cells, including bone marrow, brain, intestine, liver and smooth muscle, current research suggests that these can only differentiate within their own lineage. Most information is available from studies on hemopoietic stem cells, which can produce different types of cells within the hemopoietic system but cannot transdifferentiate into other lineages.1In contrast, as one moves toward the earlier stages of fetal and embryonic development, the capacity of stem cells to achieve totipotentency—that is, to differentiate into multiple mature lineages of endodermal, mesodermal and ectodermal origin—becomes evident. Development of antibodies to stage specific cell surface markers2 and specific markers for ectodermal, endodermal and mesodermal developmental pathways has allowed early characterization of cell lines derived from the blastocyst inner cell mass.

This content is limited to qualifying members.

Existing members, please login first

If you have an existing account please login now to access this article or view purchase options.

Purchase only this article ($25)

Create a free account, then purchase this article to download or access it online for 24 hours.

Purchase an SMJ online subscription ($75)

Create a free account, then purchase a subscription to get complete access to all articles for a full year.

Purchase a membership plan (fees vary)

Premium members can access all articles plus recieve many more benefits. View all membership plans and benefit packages.

References

1. Joshi C, Enver T. Molecular complexities of stem cells. Curr Opin Hematol 2003;10:220–228.
 
2. Henderson JK, Draper JS, Baillie HS, et al. Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens. Stem Cells 2002;20:329–337.
 
3. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature2001;410:701–705.
 
4. Shen CN, Slack JM, Tosh D. Molecular basis of transdifferentiation of pancreas to liver. Nat Cell Biol2000;2:879–887.
 
5. Balsam LB, Wagers AJ, Christensen JL, et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 2004;428:668–673.
 
6. Murry CE, Soonpaa MH, Reinecke H, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 2004;428:664–668.
 
7. Maltsev VA, Wobus AM, Rohwedel J, et al. Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes and ionic currents. Circ Res 1994;75:233–244.
 
8. Dinsmore J, Ratliff J, Deacon T, et al. Embryonic stem cells differentiated in vitro as a novel source of cells for transplantation. Cell Transplant 1996;5:131–143.
 
9. Okabe S, Forsberg-Nilsson K, Spiro AC, et al. Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech Dev 1996;59:89–102.
 
10. Narita N, Bielinska M, Wilson DB. Cardiomyocyte differentiation by GATA-4-deficient embryonic stem cells. Development 1997;124:3755–3764.
 
11. Soria B, Roche E, Berna G, et al. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 2000;49:157–162.
 
12. Feraud O, Cao Y, Vittet D. Embryonic stem cell-derived embryoid bodies development in collagen gels recapitulates sprouting angiogenesis. Lab Invest 2001;81:1669–1681.
 
13. Kaufman D, Hanson E, Lewis R, et al. Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A 2001;98:10716–10721.
 
14. Choi D, Oh HJ, Chang UJ, et al. In vivo differentiation of mouse embryonic stem cells into hepatocytes. Cell Transplant 2002;11:359–368.
 
15. Skoudy A, Rovira M, Savatier P, et al. Transforming growth factor signaling pathways promote pancreatic exocrine gene expression in mouse embryonic stem cells. Biochem J 2004;379:749–756.
 
16. Ludwig TE, Levenstein ME, Jones JM, et al. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 24:185–187.
 
17. Hovatta O, Mikkola M, Gertow K, et al. A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells. Hum Reprod 2003;18:1404–1409.
 
18. Lee JB, Lee JE, Park JH, et al. Establishment and maintenance of human embryonic stem cell lines on human feeder cells derived from uterine endometrium under serum-free condition. Biol Reprod2005;72:42–49.
 
19. Directive 2004/23/EC of the European Communities and of the Council of 31 March 2004 on setting standards of quality and safety for the donation, procurement, testing, processing, preservation, storage and distribution of human tissues and cells. Official Journal of the European Union. Available at:http://europa.eu/scadplus/leg/en/cha/c11573.htm.
 
20. Stem cells: miracle or mere deception? PRAVDA.Ru.http://english.pravda.ru/science/19/94/377/14900_.html
 
21. Padma TV. Unchecked by guidelines, Indian stem cell scientists rush ahead. Nat Med 2006;12:4.
 
22. Drukker M, Katz G, Urbach A, et al. Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci U S A 2002;99:9864–9869.
 
23. Drukker M, Benvenisty N. The immunogenicity of human embryonic stem-derived cells. Trends Biotechnol 2004;22:136–141.
 
24. Draper JS, Pigott C, Thomson JA, et al. Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J Anat 2002;200(Pt 3):249–258.
 
25. Boyd AS, Higashi Y, Wood KJ. Transplanting stem cells: potential targets for immune attack. Modulating the immune response against embryonic stem cell transplantation. Adv Drug Deliv Rev2005;57:1944–1969.
 
26. Drukker M, Katchman H, Katz G, et al. Human embryonic stem cells and their differentiated derivatives are less susceptible to immune rejection than adult cells. Stem Cells 2006;24:221–229. Epub 2005 Aug 18.
 
27. Campbell KH, McWhir J, Ritchie WA, et al. Sheep cloned by nuclear transfer from a cultured cell line. Nature 1996;380:64–66.
 
28. Cibelli JB, Stice SL, Golueke PJ, et al. Transgenic bovine chimeric offspring produced from somatic cell-derived stem-like cells. Nat Biotechnol 1998;16:642–646.
 
29. Wakayama T, Tabar V, Rodriguez I, et al. Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 2001;292:740–743.
 
30. Rideout WM Hochedlinger K, Kyba M, et al. Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 2002;109:17–27.
 
31. Cibelli JB, Lanza RP, West MD, et al. The first human cloned embryo. Sci Am 2002 Jan;286:44–51.
 
32. Hwang WS, Ryu YJ, Park JH, et al. Evidence of a pluripotent human embryonic stem cell line derived from a cloned blastocyst.  | Science 2004;303:1669–1674.
 
33. Kennedy D. Editorial retraction. Science 2006;311:335.
 
34. Stojkovic M, Stojkovic P, Leary C, et al. Derivation of a human blastocyst after heterologous nuclear transfer to donated oocytes. Reprod Biomed Online 2005;11:226–231.
 
35. Draper JS, Smith K, Gokhale P, et al. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 2004;22:53–54.
 
36. Enver T, Soneji S, Joshi C, et al. Cellular differentiation hierarchies in normal and culture-adapted human embryonic stem cells. Hum Mol Genet 2005;14:3129–3140.
 
37. McNeish J. Embryonic stem cells in drug discovery. Nat Rev Drug Discov 2004;3:70–80.